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ABSTRACT: Catalytic asymmetric Mannich reactions of imines with weakly acidic simple amides were developed using a chiral
potassium hexamethyldisilazide (KHMDS)−bis(oxazoline) potassium salt (K-Box) catalyst system. The desired reactions proceeded
to afford the target compounds in high yields with high diastereo- and enantioselectivities. It was suggested that a K enolate
interacted with K-Box to form a chiral K enolate that reacted with imines efficiently. In this system, K-Box (potassium salt of Box)
worked as a chiral ligand of the active potassium species.

Asymmetric catalysis is a robust methodology for providing
optically active molecules with high efficiency. To date,

many kinds of chiral metal- and organo-catalysts have been
developed and employed in asymmetric transformations.1

Alkaline metal compounds have often been employed as
stoichiometric Brønsted bases or strong nucleophiles in
organic synthesis. Among them, lithium compounds modified
by chiral ligands have been investigated extensively and applied
for asymmetric reactions.2−6 However, successful examples of
chiral modification using other alkaline metal species such as
sodium and potassium compounds are limited. This is
presumably because their Lewis acidity is lower and their
ionic radius is larger than those of a lithium ion; however, their
reactivity is high, especially in Brønsted base catalysis.7 Chiral
multidentate Lewis base ligands such as chiral crown ethers
have traditionally been employed for chiral modification;8−17

however, other effective methodologies are yet to be
developed.18,19 Here, we report that a chiral potassium salt−
potassium base mixed aggregate system is an effective chiral
potassium Brønsted base catalyst in asymmetric reactions. In
this system, the chiral potassium salt functions as a chiral
ligand (Figure 1).20,21

Catalytic asymmetric Mannich reactions of imines with
amides and esters are one of the most powerful and atom-
economical methods to provide optically active β-amino acid
derivatives without any redox process.22−30 To date, although
several catalytic asymmetric Mannich reactions with easily

enolizable carbonyl compounds such as aldehydes and ketones
(pKa ≤ 30 in DMSO)31 have been developed,32−41 the
reactions with amides and esters without any electron-
withdrawing groups at their α-positions (pKa ≥ 30 in
DMSO) have been unsuccessful.42−45 The most commonly
employed methods still utilize preformed metal/metalloid
enolates such as lithium enolates and ketene silyl acetals, which
generate significant amounts of waste. Recently, Shibasaki and
Kumagai et al. reported catalytic asymmetric Mannich
reactions with 1-acyl-7-azaindoles as well-designed
amides.46−55 In these reactions, many kinds of 1-acyl-7-
azaindoles were available as acyl donors, while a 7-azaindole
part was always required to obtain high reactivity and
stereoselectivity.
Recently, we have focused on developing strong Brønsted

base catalyzed addition reactions with weakly acidic carbon
pronucleophiles by designing strongly basic reaction inter-
mediates.56,57 Addition reactions of weakly acidic carbonyl and
related compounds, such as esters, amides, and alkylnitriles
(pKa = 30−35 in DMSO), and their asymmetric variants have
been developed.58−67 However, catalytic asymmetric Mannich
reactions with weakly acidic simple amides such as
propionamides have not yet been achieved. We report here
our efforts to realize these reactions using a newly discovered
chiral strong Brønsted base catalyst system.
We investigated the Mannich reaction of the benzaldehyde

imine bearing 2,4-dimethoxyphenyl (DMP) group on the
nitrogen atom as a protecting group (1a) with N,N-
dimethylpropionamide (2a) as substrates in the presence of
potassium hexamethyldisilazide (KHMDS) and a chiral
ligand.68 Initially, chiral crown ethers were employed as chiral
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Figure 1. Chiral modification methods for metal species
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ligands; however, no significant enantioselectivity was observed
(Table 1, entry 1; also see Table S1 in the Supporting

Information (SI)). We then examined the use of typical chiral
bis(oxazoline) (Box) ligands L07, with a disubstituted
methylene tether, and L1, with an unsubstituted methylene
tether, and it was found that the reactions did not proceed at
all in either case (entries 2 and 3; see also Scheme S1 in SI).
Indeed, KHMDS reacted with L1 to form a potassium salt K-
L1 (See Chart S1 in SI). Unexpectedly, it was found that K-L1
itself was effective for chiral modification of KHMDS, and the
desired reaction proceeded smoothly in THF at −78 °C to
obtain the product 3aa in high yield with high diastereo- and
enantioselectivity (entry 4). It seemed that the chiral
potassium salt K-L1 worked as a chiral ligand; however, such
a chiral metal salt ligand was unprecedented, and it is generally
thought to be difficult to create a strict asymmetric
environment around a potassium enolate without a significant
Lewis basic coordination site.
Using an interesting catalyst system, optimization of the

reaction conditions was conducted (Table S3 in SI). The effect
of solvents on the reaction was first examined. While
cyclopentyl methyl ether (CPME) and tert-butyl methyl
ether (TBME) gave good enantioselectivities among the
ether solvents, THF was found to be the best solvent. We
then investigated potassium-Box salts K-L. While K-L2 and K-

L4 were ineffective for this reaction, the other Box derivatives
K-L3, K-L5-7 worked well, and good to high levels of
enantioselectivities were obtained. Among them, the best K-
Box was K-L1, which was selected for further investigations
(for the effect of other alkaline metal bases, see Tables S4 and
S5 in SI). Catalyst loading and the amount of 2a were
optimized, and the use of 1.1 equiv of 2a with 5 mol %
KHMDS and 5 mol % K-L1 system was found to be the best
conditions. The use of excess KHMDS to K-L1 still gave good
enantioselectivity. KHMDS itself also promoted the reaction,
but the yield was very low. The effect of the N-aryl group was
also investigated (Table S6 in SI). It was found that the 2-
methoxy group on the N-aryl group was important to achieve
high enantioselectivity in this reaction.
The substrate scope of the reaction was then examined

(Table 2). Tolyl imines were used in the reaction, and high
yields and high diastereo- and enantioselectivities were
obtained (entries 2−4). Ethyl and phenyl substituents on the
phenyl group were also effective (entries 5 and 6). In reactions
using imines bearing a methoxy group, high selectivities were
observed, but the reactivity of the p-methoxyphenyl imine was
lower (entries 7−9). Halogen-substituted imines were also
successfully employed, and the desired products were obtained
in good yields (entries 10−14). An imine bearing a CF3 group
and a 2-naphthyl imine gave the products in high yields with
high selectivities (entries 15 and 16). The pyridyl imines were
also effective; however, the 2-pyridyl imine showed lower
enantioselectivity (entries 17−19). Alkyl imines were also
available; cyclopropyl, tert-butyl, and 2-phenyl-1,1-dimethy-
lethyl imines reacted with 2a, and high enantioselectivities
were obtained (entries 20−22).69 The scope of the amide
structure was also investigated. It was found that less hindered
Box salt K-L5 was effective when longer alkylamides (2b−e)
were used, and high diastereo- and enantioselectivities were
obtained (entries 23−26). N,N-Dimethylacetamide (2f) also
showed good enantioselectivity using K-L1 as the ligand (entry
27). Other propionamides 2h−2j were further tested, and
good to high enantioselectivities were obtained (entries 28−
30). It was also found that tert-butyl propionate (2k) gave the
desired product in high yield with high enantioselectivity;
however, the diastereoselectivity was moderate (entry 31).
The DMP group on the nitrogen atom of the product was

successfully removed using cerium ammonium nitrate (CAN),
and 5aa was obtained in high yield after benzoylation without
any loss of enantioselectivity (Scheme 1, eq 1).70,71 On the
other hand, the amide part was converted into the ester under
acidic conditions to obtain β-amino ester 6aa in high yield (eq
2). In addition, the asymmetric Mannich reaction in a gram-
scale also proceeded smoothly without a decrease in reactivity
or selectivity (eq 3).
Synthesis of SCH-48462, a cholesterol absorption inhibitor

possessing a β-lactam core, was then performed (Scheme
2).72−75 The reaction of imine 1g with amide 2g was
conducted using KHMDS and K-L5. The desired adduct
3gg was obtained in high yield with high diastereo- and
enantioselectivities. The adduct 3gg was treated with Tf2O
followed by NaOH to obtain β-lactam 7gg in good yield.76,77

After the DMP group was removed, NH-free β-lactam 8gg was
obtained, the optical purity of which was enhanced by
recrystallization. After the introduction of a p-methoxyphenyl
group, SCH-48462 was obtained in optically pure form.75

The structure of the K enolate−K-L1 complex was
investigated by DFT calculations (Figure 2).78,79 The results

Table 1. Initial Investigation of Asymmetric Mannich
Reaction

entry ligand yield (%)a anti/synb ee (%, anti)

1c L06 70 67:33 18
2 L07 NR − −
3 L1 NR − −
4d K-L1 98 99:1 91

aIsolated yield. bDetermined by 1H NMR analysis of the crude
mixture. cKHMDS (15 mol %) and L06 (16.5 mol %) in toluene.
dThe catalyst prepared from KHMDS (20 mol %) and L1 (10 mol
%).
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suggested that the two potassium ions were situated between
the two nitrogen atoms of L1 symmetrically and that the
enolate was sited between the two potassium ions. The
stability of the complex was due to a significant electrostatic
interaction between the K enolate and K-L1. This finding
indicated that the K and O atoms of the K enolate were tightly
fixed in an asymmetric environment. This symmetrical
structure was also supported by NMR studies (see SI).
The reaction mechanism was considered to follow the

pathway proposed in Chart 1. KHMDS interacts with the K-
Box formed in situ80,81 to form KHMDS−K-Box complex I,
which might work as a base to form chiral K enolate−K-Box
complex II by deprotonation of 2.82 Reactivity of the complex
II would be higher than free K enolate species due to the
greater Lewis acidic nature of complex II or difference of their
aggregation states.83 Formation of complex II could be
supported by NMR studies (see SI).84 Complex II reacts

with imine 1 to form K-Box and intermediate complex
III.85−88 There are two possible pathways to regenerate
complex II from this species (paths A and B).89 At the current
stage, both pathways are possible and it is difficult to
distinguish between them.
In summary, we developed catalytic asymmetric Mannich

reactions of imines with weakly acidic simple amides using a
chiral KHMDS−Box potassium salt (K-Box) catalyst system.
The desired reactions proceeded to obtain the target
compounds in high yields with high diastereo- and
enantioselectivities. A wide substrate scope and applications
of the reaction were demonstrated. Preliminary mechanistic
studies and calculations suggested that the K enolate interacted
with K-Box to form a symmetric chiral K enolate. In this
catalyst system, the K-Box worked as a chiral ligand to form
active potassium species in a mixed aggregation state. To our
knowledge, this kind of chiral modification of potassium

Table 2. Substrate Scope

entry R1 R2 yield (%)a anti/synb ee (%, anti)

1 Ph (1a) Me (2a) 96 99:1 92
2 p-MeC6H4 (1b) Me (2a) 91 99:1 94
3 m-MeC6H4 (1c) Me (2a) 85 98:2 89
4 o-MeC6H4 (1d) Me (2a) 87 98:2 89
5 p-EtC6H4 (1e) Me (2a) 86 99:1 94
6 p-PhC6H4 (1f) Me(2a) 68 99:1 95
7c p-MeOC6H4 (1g) Me (2a) 89 98:2 94
8 m-MeOC6H4 (1h) Me (2a) 82 98:2 89
9 o-MeOC6H4 (1i) Me (2a) 97 99:1 91
10c p-FC6H4 (1j) Me (2a) 91 99:1 93
11c p-ClC6H4 (1k) Me (2a) 84 99:1 94
12c p-BrC6H4 (1l) Me (2a) 83 99:1 95
13d m-BrC6H4 (1m) Me (2a) 78 98:2 84
14c o-BrC6H4 (1n) Me (2a) 82 96:4 85
15d m-CF3C6H4 (1o) Me (2a) 77 98:2 85
16 2-naphthyl (1p) Me (2a) 85 99:1 90
17d 4-pyridyl (1q) Me (2a) 65 97:3 85
18d 3-pyridyl (1r) Me (2a) 82 99:1 92
19d 2-pyridyl (1s) Me (2a) 96 94:6 72
20d,e Cyclopropyl (1t) Me (2a) 86 >99:1 92
21c,d,f tBu (1u) Me (2a) 64 99:1 88

22c,d,f PhCH2CMe2 (1v) Me (2a) 71 >99:1 88
23e,g Ph (1a) Et (2b) 78 99:1 94
24d,e Ph (1a) C5H11(2c) 92 >99:1 93
25c,d,e Ph (1a) iPr (2d) 61 >99:1 91

26c,e Ph (1a) PhCH2 (2e) quant. 99:1 97
27 Ph (1a) H (2f) 67 − 82
28d Ph (1a) Me (2h) quant. 99:1 89
29d Ph (1a) Me (2i) 81 98:2 94
30 Ph (1a) Me (2j) 99 >99:1 78
31d,h Ph (1a) Me (2k) 96 68:32i 85j

aIsolated yield. bDetermined by 1H NMR analysis of a crude mixture. cFor 48 h. dKHMDS (20 mol %) and L (10 mol %) were used. eK-L5 was
used instead of K-L1. The opposite enantiomer was obtained. fAt −40 °C with 2.0 equiv of 2a. N-(2-Methoxyphenyl) imine was used instead of N-
DMP imine. gIn 0.8 M. hIn 0.2 M for 18 h with 2.0 equiv of 2k. iRatio of the major and minor diastereomers. jEe of the major diastereomer.
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species for asymmetric catalysis is unprecedented. Concep-
tually, not only the chiral Box derivatives but also other types
of chiral acids might be applicable for the preparation of chiral
potassium salts. Further investigations to expand this new
concept are ongoing in our laboratory.
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