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5-(dimethoxyphosphoryl)-alka-3,4-dienoates leading to 2,5-dihydro-1,
2-oxaphospholes and 5,6-dihydro-2H-pyranes

Hasan H. Hasanov, Ivaylo K. lvanov, and Valerij Ch. Christov

Department of Chemistry, Faculty of Natural Sciences, Konstantin Preslavsky University of Shumen, Shumen, Bulgaria

ABSTRACT

We report herein a study on the competitive electrophilic cyclization of 5-(dimethoxyphosphoryl)-
alka-3,4-dienoates involving 5-endo-trig and 6-endo-trig mode cyclizations. Reaction with electro-
of the 2-(2-oxo-2,5-dihydro-1,2-oxaphosphol-5-yl)-alkanoates
(6-ox0-5,6-dihydro-2H-pyran-2-yl)-phosphonates by competitive electrophilic cyclization due to the
participation of the neighboring phosphonate and carboxylate groups.

philes produces mixtures
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Introduction

In recent years, allenes have atracted the interest of scientists
due to their unique cumulene structure and atypical bio-
logical activities. They are adaptable building blocks with
broad applications in modern synthetic chemistry."") Allenes
are key subunits in a variety of natural products and
pharmaceutical molecules.!"™*? Allenyl phosphonates are an
important class of allene-containing, extremely versatile
reagents in organic chemistry, especially for the preparation
of structurally diverse organo-phosphorus compounds and
phosphorus containing heterocyclic compounds.'*

Several recent articles on allenyl phosphonates and phos-
phine oxides concerning synthesis[4a—e] and various cycliza-
tion reactions!*e—o! have appeared and demonstrate, that the
resulting allenes are very attractive synthetic building blocks
due to their versatile reactivity. Acyclic analogs of nucleotides
containing an allenic skeleton were prepared by Brel and cow-
orkers”! directly from alcohols by Horner-Mark [2,3]-sigma-
tropic rearrangement of unstable propargylic phosphites.

A literature survey on the reactions of allenyl phosphonates
with electrophilic reagents showed that depending on the struc-
ture of the starting allenic compound as well as the type of the
electrophile, the reactions proceed with cyclization of the
allenic system bearing phosphoryl group (O =P-C=C=C) to
give heterocyclic compounds in most cases.®’ The reactions
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lead to 2,5-dihydro-1,2-oxaphospholes (Scheme 1, as products
I) or/and 4,3- (as products III) or/and 4,5-adducts (as products
IV) or a mixture of them, depending on the degree of substitu-
tion at the C' and C’ atoms of the allenic system, the nature of
these substituents, and the type of the reagents.!®!

The electrophilic cyclization involving o-allenic acids and
their derivatives, disubstituted on the y-carbon atom, the so-
called lactonization reaction, leads through an electrophilic
attack on the central atom of the allenic structure and ring
closure to furan-2(5H)-ones (y-lactones).[7]

Dihydropyrans are important intermediates in organic
synthesis due to the presence of the C=C bond as well as
the six-membered ring. Consequently, much attention has
been paid to the development of efficient and diverse syn-
thetic methods for the construction of this six-membered
ring system.”®! Dihydropyrans and their derivatives are
structural subunits frequently found in a wide variety of nat-
ural products which find application as flavor and fragrance
compounds and pharmaceuticals.””) Dihydropyrans represent
an important structural motif featured in bioactive mole-
cules and natural products,“o] and they are also versatile
intermediates in organic synthesis.!'") It was observed by
Wan and Nelson!'%a! that the Ag(I)-catalyzed cyclization of
a f-allenic acid, accelerated by a substoichiometric quantity
of amine base (iPr,NEt), resulted in rapid formation of
o-lactone (Scheme 1, as products II). Related J-lactone was
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Scheme 1. Synthesis of the 5-(dimethoxyphosphoryl)-alka-3,4-dienoates 1a-e.l'
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Scheme 2. Possible products of the electrophilic reaction of the 5-(dimethoxy-
phosphoryl)-alka-3,4-dienoates 1a-e.['¥

the product of bromination of 1-bromoallenyl ethyl ester
(p-allenic ester) the formation of which can be explained by
a reaction cascade, starting with the electrophilic addition to
the central allenic carbon atom followed by intramolecular
cyclization accompanied by elimination of ethyl bromi-
de."?b! On the other hand, intramolecular cyclization of the
diethylphosphono-substituted o-allenic alcohols in the pres-
ence of AgNO5!"%a! and CuCL""*b! yielded 3,6-dihydro-2H-
pyran-4-yl-®°! and 4,5-dihydro-3-furanyl-phosphonates.

With this in mind, and in continuation of our long-stand-
ing program directed toward the synthesis'"*! and the devel-
opment of efficient protocols for the synthesis of heterocyclic
compounds by electrophilic cyclization reactions"®!  of
bifunctionalized allenes, our attention is drawn to the

5-(dimethoxyphosphoryl)-alka-3,4-dienoates la-e as 1,3-
bifunctionalized allenes, that comprise an 1-(x-phosphonate)
and a 3-(f-alkoxycarbonyl) group in the allenic system of
double bonds (Schemes 1 and 2). The applications of these
groups as temporary transformers of chemical reactivity of
the allenic system in the synthesis of heterocyclic compounds
are of particular interest. These molecules can be considered a
combination of an allenephosphonate and an allenecarboxy-
late and they are supposed to have different reactivity profiles
in cyclization reactions. In continuation of our communica-
tions!’”! on the synthesis and cyclization reactions of the
bifunctionalized allenes, in this paper, we present recent
results of our studies dedicated toward the competitive elec-
trophilic cyclization reaction of a library of 5-(dimethoxy-
phosphoryl)-alka-3,4-dienoates, which improve the scope of
this method for the synthesis of heterocyclic compounds.

Results and discussion

Synthesis of the 5-(dimethoxyphosphoryl)-alka-3,4-
dienoates 1a-e

We applied a convenient, efficient, atom economical and
regioselective four-step method to prepare a range of the
5-(dimethoxyphosphoryl)-alka-3,4-dienoates  1a-e.!"*)  Our
strategy for the synthesis of la-e, using our experience on
the preparation of other bifunctionalized allenes,!'® relies
on the well-precedented 2,3-sigmatropic shift of propargylic
phosphites to allenephosphonates. In order to assess this
approach toward the target 5-phosphorylated allenecarboxy-
lates 1a-e, a range of propargylic alcohols was prepared by
the reaction of metallated acetylenes with commercialy avail-
able alkyl 3-oxoalkanoates (Scheme 2). With the required
alkyl 3-hydroxy-alk-4-ynoates in hand, we were then able to
investigate the proposed reaction with dimethyl chlorophos-
phite and subsequent atom economical [2,3]-sigmatropic
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Scheme 3. Synthesis of 2a and 3a by competitive electrophilic cyclization of 5-(dimethoxyphosphoryl)-2,2,3-trimethylpenta-3,4-dienoates 1a. Reagents and
Conditions: E=MeSCl (1.2 eq.), CH,Cl,, —20°C, 2h, rt, 3 h, stirring, column chromatography.

rearrangement of the mediated 5-(dimethoxyphosphany-
loxy)-alk-4-ynoates.!'

The allenylphosphonates 1a-e were isolated in preparative
amounts, which allowed us to study their chemical behavior
in the reaction with electrophilic reagents. The present paper
is a recent part of our long-term objective to investigate
both the scope and the limitations of the electrophilic cyc-
lization reaction of bifunctionalized allenes, namely the
5-(dimethoxyphosphoryl)- f-allenecarboxylates.

Competitive electrophilic cyclization of 5-
(dimethoxyphosphoryl)-alka-3,4-dienoates 1a-e

It is necessary to draw the attention to the fact, that concep-
tually three distinct modes of cyclization of the 5-(dimethox-
yphosphoryl)-alka-3,4-dienoates 1la-e are possible. They
depend on the electrophilic atom that forms a new bond
with the central carbon atom of the allenic system, which
seems likely.!®*”!>17) 1t is evident that these pathways are
closely connected with the participation of the competitive
intramolecular neighboring phosphonate and/or alkoxycar-
bonyl groups as internal nucleophiles in the final step of the
cyclization. Besides the 5-endo-trig cyclization'®! to the 2-
(2-0x0-2,5-dihydro-1,2-oxaphosphol-5-yl)-alkanoates I, and
the 6-endo-trig cyclization"®! to the (6-oxo-5,6-dihydro-2H-
pyran-2-yl)-phosphonates (6-lactones) II, the electrophilic
addition might afford the 4,3-adducts III and/or the 4,5-
adducts IV (Scheme 1).

We started the present study with the reaction of the
methyl  5-(dimethoxyphosphoryl)-2,2,3-trimethylpenta-3,4-
dienoate la with methanesulfenyl chloride (Scheme 3). We
conducted the reaction under the optimized reaction condi-
tions determined in similar reactions of bifunctionalized
allenes!"*!—solvent CH,Cl, at —20°C using 1.0 equiv. of the
allenephosphonate and 1.2 equiv. of the electrophilic
reagent. Using spectral methods we established that the reac-
tion under this set of standard reaction conditions in the
favored 5-endo-trig and 6-endo-trig mode afforded a mixture
of methyl 2-(2-methoxy-5-methyl-4-methylsulfenyl-2-oxo-
2,5-dihydro-1,2-oxaphosphol-5-yl)-2-methylpropanoate ~ 2a
and dimethyl (4,5,5-tri-methyl-3-methylsulfenyl-6-oxo-5,6-
dihydro-2H-pyran-2-yl)-phosphonate 3a (Scheme 3) in the
ratio of 1.47:1. Obviously the reaction proceeds by competi-
tive electrophilic cyclization of the allenephosphonate la
with the neighboring group participation of phosphonate
and carboxylate groups in the cyclization in very good over-
all isolated yield (74%).

In order to confirm the structure of the cyclic product 3a
we carried out a Horner-Wadsworth-Emmons reaction"”’

by the treatment of 5,6-dihydro-2H-pyran-2-ylphosphonate
3a with 2.2. eq. of NaH followed by reaction with PhCHO
in THF (Scheme 4). We established that the reaction under
these reaction conditions led to the formation of the 6-ben-
zylidene-3,6-dihydro-2H-pyran-2-one 4 as a mixture of
(6E)- and (6Z)-isomer in a ratio of E:Z=6.4:1 in overall
yield of 63%.

To outline the general terms of this methodology, the
reactions of other 5-(dimethoxyphosphoryl)-alka-3,4-dien-
oates 1b-e with different electrophilic reagents such as sul-
furyl chloride, bromine, methane- and benzene-sulfenyl
chloride, and benzeneselenenyl chloride were investigated.
In all cases (Scheme 5), the interaction afforded mixtures of
the  2-(2-0x0-2,5-dihydro-1,2-oxaphosphol-5-yl)-alkanoates
2b-1 and (6-0x0-5,6-dihydro-2H-pyran-2-yl)-phosphonates
3b-1 in overall yields of 66-81% in the ratio from 1.26:1 to
1.68:1. These reaction pathways may be interpreted as the
result of competitive electrophilic cyclization of the 5-(dime-
thoxyphosphoryl)-alka-3,4-dienoates la-e with participation
of the neighboring phosphonate and alkoxycarbonyl groups
as internal nucleophiles in the favored 5-endo-trig and 6-
endo-trig mode cyclizations.

Thus, on the basis of the available literature data
and our previous results,'* a rationale for this reaction is
depicted in Scheme 6. The starting point is the attack of the
electrophile (CIT, Brt, ST, or Se™) on both C*-C*- and C*-
C’-double bonds with formation of the cyclic onium
(chloronium, bromonium, thiiranium, or seleniranium) ions
A and B. Then, the ions A and B are easily transformed
into the more stable five-membered cyclic ions C and D via
the attachment of the oxygen atom of the phosphonate and
carboxylate functionality. Further, the intermediates C
undergo nucleophilic attack on the MeO group of the
phosphonate group and elimination of methyl halide
(MeNu) affording the final cyclic products 2a-l. Similarly,
the ions D transform to the 5,6-dihydro-2H-pyrans 3a-1
after nucleophilic attack on the R0 group of the carboxyl-
ate group and elimination of alkyl halide (R*Nu). The elec-
tronic difference of the two double bonds due to the
presence of two electron-withdrawing groups at the terminal
carbon atoms as well as the steric effect resulting from the
substitutions may both contribute to the observed
regioselectivity.

Formation of the cyclic products 2a-1 and 3a-l1 can be
considered in terms of the assumption of concurrent attacks
of the internal nucleophiles (phosphonate and carboxylate
groups) on the cyclic three-membered onium ion A and B.
Obviously, this mechanistic rationale could be explained by
the assumption of favorable trans arrangement of the elec-
trophile and the internal nucleophile (phosphonate or

[6,7,17]
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Scheme 4. Synthesis of the (6£)-4 and (62)-4 by Horner-Wadsworth-Emmons reaction of 3a. Reagents and Conditions: NaH (2.2 eq.), THF, rt, 30 min, PhCHO (1.4 eq.)

THF, 40-50°C, 120 min, column chromatography.
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Scheme 5. Synthesis of the 2-(2-oxo-2,5-dihydro-1,2-oxaphosphol-5-yl)-alkanoates 2a-I and (6-oxo-5,6-dihydro-2H-pyran-2-yl)-phosphonates 3a-l by competitive
electrophilic cyclization of the 5-(dimethoxyphosphoryl)-alka-3,4-dienoates 1a-e. Reagents and Conditions: E=Cl, Br, MeS, PhS, PhSe; Nu=Cl, Br (1.2 eq.), CH,Cl,,

—20°C, 2h, rt, 3 h, stirring, column chromatography.
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Scheme 6. A rationale for the reaction of the 5-(dimethoxyphosphoryl)-alka-3,4-dienoates 1a-e with electrophilic reagents.

carboxylate groups) and anti-attack of the internal nucleo-
philes on the onium ions A and B. This is supposed to arise
from attacks on the allenic C*-C*- and C*-C’-double bonds
anti to the phosphonate and carboxylate groups, respect-
ively, which assisted in the two types cyclization by the
neighboring groups participation of the internal nucleo-
philes. On the other hand, a possible explanation of the two
types cyclization observed consists of the following: In the
first case, it is possible that the cyclic onium ions A and B

further transform to the non-cyclic allylic cations AB
(Scheme 7), the predominant formation of the 2,5-dihydro-
1,2-oxaphospholes 2a-j could be explained by charge distri-
bution in allylic resonance form. Larger positive charge
should be located in this cation on the carbon atom, which
is located far from the acceptor P =0 group:

In the second case, another probable reason for the pre-
dominant participation of the phosphonate group as an
internal nucleophile is the higher nucleophilicity of the
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Scheme 7. Non-cyclic allylic cations AB.

phosphonate oxygen atom in comparison with the carbox-
ylic one, which is in connection with the larger polarization
of the phosphoryl group.

The above mentioned explanation should account for the
results on the study of the reactions of other bifunctional-
ized allenes with electrophilic reagents. Further work in this
area shall focus on exploiting and extending the synthetic
utility of the bifunctionalized allenes for the preparation of
different heterocyclic systems by application of the electro-
philic cyclization methodology.

Experimental
General information

All synthesized compounds were purified by column chro-
matography and characterized by NMR, IR, MS and micro-
analytical data. NMR spectra were recorded with Brucker
Avance II + 600 (*H at 600.1 MHz, *C at 150.9 MHz, *'P
at 242.9 MHz) spectrometer in CDCl; solutions. All 'H and
C NMR experiments were measured referring to the signal
of internal TMS and the *'P NMR experiments were meas-
ured referring to the signal of external 85% H3;PO,. J values
are given in hertz. IR spectra were recorded with an FT-IR
Afinity-1 Shimadzu spectrophotometer. Elemental analyses
were carried out by the Microanalytical Service Laboratory
using Vario EL3 CHNS(O). HRMS were recorded with a
Thermo Scientific Q Exactive hybrid quadrupole-orbitrap
mass spectrometer. Column chromatography was performed
on Kieselgel F,5460 (70-230 mesh ASTM, 0.063-0.200 nm,
Merck). CH,Cl, was distilled over CaH,. Reactions were car-
ried out in oven dried glassware under an argon atmosphere
and exclusion of moisture. All compounds were checked for
purity on TLC plates Kieselgel Fp54 60 (Merck).

Starting materials

Dimethyl and diphenyl disulfide and sulfuryl chloride in
dichloromethane were used to prepare methane- and ben-
zene-sulfenyl chloride. All other chemicals used in this study
were commercially available and were used without add-
itional purification unless otherwise noted. The starting 5-
(dimethoxyphosphoryl)-alka-3,4-dienoates la-e were pre-
pared according to earlier reported procedure.!'*

General procedure for the reactions of the alkyl 5-
(dimethoxyphosphoryl)-alka-3,4-dienoates 1a-e with
electrophilic reagents

To a solution of the 5-(dimethoxyphosphoryl)-alka-3,4-dien-
oates la-e (3.0mmol) in dry dichloromethane (10mL) at
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—20°C was added dropwise with stirring a solution of elec-
trophilic reagent (sulfuryl chloride, bromine, methane- or
benzenesulfenyl chloride, or benzeneselenenyl chloride)
(3.6 mmol) in the same solvent (10 mL). The reaction mix-
ture was stirred at the same temperature for 2h and then at
room temperature for 3h (reactions were monitored by
TLC). After evaporation of the solvent, the residue was puri-
fied by column chromatography on a silica gel with ethyl
acetate/hexane. The pure products 2a-1 and 3a-1 had the fol-
lowing properties.

Methyl 2-(2-methoxy-5-methyl-4-methylsulfenyl-2-oxo-
2,5-dihydro-1,2-oxaphosphol-5-yl)-2-methyl-
propanoate 2a

Yellow oil, yield: 44%. Eluent for TLC: ethyl acetate:hexane
= 1:2, R¢ 0.69; IR (neat, cm_l): 1017 (C-O-P), 1251 (P =0),
1586 (C=C), 1731 (C=0). '"H NMR (600.1 MHz): & = 1.27
(s, 3H, MeCMe), 1.35 (s, 3H, MeCMe), 1.67 (s, 3H, MeC),
241 (s, 3H, MeS), 3.59 (s, 3H, MeOC(0O)), 3.69 (d,
J=9.1Hz, 3H, MeOP(O)), 5.88 (d, J=24.6 Hz, 1H, PCH=).
>C NMR (1509 MHz): §=16.7 (J=4.5Hz, CH;), 19.4
(J=1.5Hz, CH;), 20.8 (J=1.4Hz, CHj3), 23.3 (J=4.9Hz,
CH,), 48.8 (J=7.8, C), 52.5 (CH,), 52.7 (J=15.0 Hz, CHs),

96.1 (J=10.5Hz, C), 110.6 (J=71.9Hz, CH), 1647
(J=152Hz, C), 1781 (J=4.0Hz, C). °'P NMR
(2429MHz): 6=33.2. HRMS (ESI): m/z «caled for

C1H,00sPS [M+H]t 2953133, found 295.3127. Anal
Calcd for C;;H,;oO5PS: C 44.89, H 6.51. Found: C 44.97,
H 6.55%.

Dimethyl (4,5,5-trimethyl-3-methylsulfenyl-6-oxo-5,6-
dihydro-2H-pyran-2-yl)-phosphonate 3a

Yellow oil, yield: 30%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Ry 0.40; IR (neat, cm™'): 1118 (C-O-C), 1259
(P=0), 1621 (C=C), 1752 (C=0). '"H NMR (600.1 MHz):
6 =1.36 (s, 3H, MeCMe), 1.51 (s, 3H, MeCMe), 1.60 (s, 3H,
MeC=) 2.00 (s, 3H, MeS), 3.92 (d, J=11.1Hz, 6H, MeO),
6.01 (d, J=152Hz, 1H, PCH=). >*C NMR (150.9 MHz):
0=16.0 (J=4.4Hz, CH;), 157 (J=4.6Hz, CHj), 232
(CH;), 25.4 (CHj), 414 (J=5.0Hz, C), 52.7 (J=14.6Hz,
CH;), 76.1 (J=112.7Hz, CH), 128.6 (J=15.0Hz, C), 134.9
(J=8.1Hz, C), 174.5 (J=7.8Hz, C). *'P NMR (242.9 MHz):
& =25.3. HRMS (ESI): m/z calcd for C;;H,,0sPS [M+H]*
295.3133, found 295.3156. Anal. Calcd for C;;H,;oO5PS: C
44.89, H 6.51. Found: C 44.83, H 6.43%.

Methyl 2-(4-chloro-2-methoxy-5-methyl-2-oxo-2,5-
dihydro-1,2-oxaphosphol-5-yl)-2-methyl-propanoate 2b

Pale yellow oil, yield: 48%. Eluent for TLC: ethyl acetate:hex-
ane = 1:2, Ry 0.75; IR (neat, cm™'): 1023 (C-O-P), 1249
(P=0), 1580 (C=C), 1730 (C=0). '"H NMR (600.1 MHz):
0=1.22 (s, 3H, MeCMe), 1.41 (s, 3H, MeCMe), 1.66 (s, 3H,
MeC), 3.61 (s, 3H, MeOC(0O)), 3.78 (d, J=11.4Hz, 3H,
MeOP(0)), 6.14 (d, J=25.3Hz, 1H, PCH=). *C NMR
(1509 MHz): =204 (J=7.9Hz, CHj;), 209 (J=4.8Hz,
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CH;), 23.1 (J=49Hz, CH;), 465 (J=8.1Hz, C), 50.9
(CH3), 52.8 (J=15.0Hz, CH;), 98.1 (J=9.7Hz, C), 112.9
(J=75.0Hz, CH), 162.7 (J=39.6Hz, C), 173.5 (J=4.5Hz,
C). >'P NMR (242.9 MHz): d = 34.1. HRMS (ESI): m/z caled
for C,oH,,ClOsP [M 4+ H]" 283.6654, found 283.6647. Anal.
Calcd for CoH(,ClOsP: C 42.49, H 5.71. Found: C 42.56,
H 5.65%.

Dimethyl (3-chloro-4,5,5-trimethyl-6-oxo-5,6-dihydro-2H-
pyran-2-yl)-phosphonate 3b

Yellow oil, yield: 33%. Eluent for TLC: ethyl acetate:hexane
= 12, R; 0.41; IR (neat, cm™'): 1121 (C-O-C), 1257
(P=0), 1619 (C=C), 1751 (C=0). '"H NMR (600.1 MHz):
0 =141 (s, 3H, MeCMe), 1.56 (s, 3H, MeCMe), 2.11 (s, 3H,
Me-C=), 3.88 (d, J=10.5Hz, 6H, MeO), 540 (d,
J=15.0Hz, 1H, PCH=). >*C NMR (150.9 MHz): 6=12.0
(J=4.7Hz, CH;), 23.4 (CH;), 25.0 (CH;), 40.9 (J=5.0Hz,
C), 52.8 (J=14.5Hz, CH;), 80.5 (J=112.9Hz, CH), 117.7
(J=39.2Hz, C), 135.0 (J=8.2Hz, C), 168.5 (J=8.1Hz, C).
31p NMR (242.9 MHz): § =26.2. HRMS (ESI): m/z caled for
CioH;,ClOsP [M+H]" 283.6654, found 283.6661. Anal.
Calcd for CgH(,ClOsP: C 42.49, H 5.71. Found: C 42.42,
H 5.63%.

Ethyl 2-(4-bromo-2-methoxy-5-methyl-2-oxo-2,5-dihydro-
1,2-oxaphosphol-5-yl)-2-ethyl-butanoate 2c

Pale yellow oil, yield: 45%. Eluent for TLC: ethyl acetate:hex-
ane = 1:2, R; 0.71; IR (neat, cm™!): 1018 (C-O-P), 1260
(P=0), 1582 (C=C), 1733 (C=0). "H NMR (600.1 MHz):
=091 (t, J=6.8Hz, 6H, MeCH,), 1.21 (t, J=7.0Hz, 3H,
MeCH,0), 1.74 (s, 3H, MeC), 1.78 (m, 4H, MeCH,), 3.70
(d, J=11.4Hz, 3H, MeO), 4.03 (m, 2H, MeCH,0), 6.51 (d,
J=25.4Hz, 1H, PCH=). >C NMR (150.9 MHz): 6=10.9
(CH3), 14.3 (CH;), 19.0 (J=4.6Hz, CH,), 21.1 (J=4.6Hz,
CH,), 223 (J=4.7Hz, CH;), 50.9 (J=7.9Hz, C), 52.7
(J=14.4Hz, CH,), 60.4 (CH,), 90.9 (J=9.8Hz, C), 109.5
(J=74.8Hz, CH), 143.9 (J=32.8Hz, C), 173.8 (J=5.0Hz,
C). *'P NMR (242.9 MHz): 6 =35.2. HRMS (ESI): m/z calcd
for C;3H,3BrOsP [M + H]" 370.1965, found 370.1954. Anal.
Calcd for C;3H,,BrOsP: C 42.29, H 6.01. Found: C 42.37,
H 5.96%.

Dimethyl (3-bromo-5,5-diethyl-4-methyl-6-oxo-5,6-
dihydro-2H-pyran-2-yl)-phosphonate 3c

Yellow oil, yield: 32%. Eluent for TLC: ethyl acetate:hexane
= 1:2, R; 0.38; IR (neat, cm™'): 1123 (C-O-C), 1259
(P=0), 1619 (C=C), 1753 (C=0). "H NMR (600.1 MHz):
§=0.76 (t, J=7.4Hz, 6H, MeCH,), 1.52 (m, 4H, MeCH,),
2.18 (s, 3H, Me-C=), 3.89 (d, J=10.4Hz, 6H, MeO), 6.03
(d, J=15.5Hz, 1H, PCH=). >C NMR (150.9 MHz): 6 =11.1
(CHs), 16.1 (J=5.1, CH;), 18.6 (CH,), 20.4 (CH,), 48.7
(J=4.9Hz, C), 52.9 (J=14.5, CH,), 80.2 (J=114.8 Hz, CH),
1118 (J=488Hz, C), 1437 (J=80Hz, C), 168.3
(J=7.8Hz, C). P NMR (242.9MHz): §=257. HRMS
(ESI): m/z caled for C;,H,,BrOsP [M +H] " 356.1699, found

356.1706. Anal. Calcd for C;,H,,BrOsP: C 40.58, H 5.68.
Found: C 40.51, H 5.62%.

Ethyl 2-ethyl-2-(2-methoxy-5-methyl-2-oxo-4-
phenyliselenenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)-
butanoate 2d

Yellow oil, yield: 43%. Eluent for TLC: ethyl acetate:hexane
= 1:2, R¢ 0.73; IR (neat, cm ™ '): 1024 (C-O-P), 1254 (P =0),
1437, 1489 (Ph), 1579 (C=C), 1729 (C=0). 'H NMR
(600.1 MHz): 6=0.91 (t, J=6.8Hz, 6H, MeCH,), 1.21 (t,
J=7.0Hz, 3H, MeCH,0), 1.61 (s, 3H, MeC), 1.78 (m, 4H,
MeCH,), 3.66 (d, J=11.5Hz, 3H, MeO), 4.03 (m, 2H,
MeCH,0), 6.39 (d, J=27.9Hz, 1H, PCH=). '*C NMR
(150.9 MHz): 6 =10.5 (CHs), 14.4 (CH;), 18.1 (J=4.6Hz,
CH,), 20.1 (J=4.7Hz, CH,), 20.3 (J=7.9Hz, CHj), 53.0
(J=15.0Hz, CH;), 58.1 (J=7.8Hz, C), 61.8 (CH,), 96.2
(J=9.8Hz, C), 111.1 (J=72.4Hz, CH), 129.1 (CH), 129.3
(CH), 131.1 (C), 138.1 (CH), 174.3 (J=4.6Hz, C), 175.8
(J=143Hz, C). *'P NMR (2429 MHz): 6=36.0. HRMS
(ESI): m/z calcd for C;oH,30sPSe [M + H]" 446.3564, found
446.3571. Anal. Calcd for C;oH,,0sPSe: C 51.24, H 6.11.
Found: C 51.17, H 6.05%.

Dimethyl (5,5-diethyl-4-methyl-6-oxo-3-phenylselenenyl-
5,6-dihydro-2H-pyran-2-yl)-phosphonate 3d

Yellow oil, yield: 28%. Eluent for TLC: ethyl acetate:hexane
= 12, R 0.41; IR (neat, cm™'): 1122 (C-O-C), 1261
(P=0), 1439, 1492 (Ph), 1621 (C=C), 1749 (C=0). 'H
NMR (600.1 MHz): d =0.78 (t, J="7.4 Hz, 6H, MeCH,), 1.48
(m, 4H, MeCH,), 1.94 (s, 3H, Me-C=), 3.91 (d, J=10.5Hz,
6H, MeO), 6.07 (d, J=15.0Hz, 1H, PCH=). *C NMR
(1509 MHz): =112 (CH;), 154 (J=5.1, CH;), 17.8
(CH,), 19.7 (CH,), 52.7 (J=14.4Hz, CH;), 53.9 (J=5.0, C),

824 (J=114.1Hz, CH), 1051 (J=14.6Hz, C), 1284
(J=432Hz, C), 1287 (J=9.9Hz, CH), 1294 (CH),
136.31J=49Hz, (CH), 1384 (J=79Hz, C), 1719

(J=8.1Hz, C). >'P NMR (2429 MHz): §=24.4. HRMS
(ESI): m/z caled for C;gH,605PSe [M + H] ™ 432.3298, found
632.3289. Anal. Calcd for C;gsH,505PSe: C 50.12, H 5.84.
Found: C 50.20, H 5.89%.

Ethyl 2-(4-chloro-2-methoxy-5-methyl-2-oxo-3-propyl-
2,5-dihydro-1,2-oxaphosphol-5-yl)-2-ethyl-butanoate 2e

Pale yellow oil, yield: 48%. Eluent for TLC: ethyl acetate:hex-
ane = 1:2, R; 0.73; IR (neat, cm™!): 1021 (C-O-P), 1260
(P=0), 1584 (C=C), 1726 (C=0). 'H NMR (600.1 MHz):
5=0.81 (t, J=7.0Hz, 3H, MeCH,CH,), 0.90 (t, J=6.8 Hz,
6H, MeCH,), 1.21 (t, J=7.0Hz, 3H, MeCH,0), 1.54 (m,
2H, MeCH,CH,), 1.65 (s, 3H, MeC), 1.70-1.88 (m, 4H,
MeCH,), 1.96 (m, 2H, MeCH,CH,), 3.68 (d, J=11.3Hz,
3H, MeO), 4.14 (m, 2H, MeCH,0). >C NMR (150.9 MHz):
5=10.1 (CHs), 14.6 (CHs), 154 (J=4.6Hz, CHs), 20.0
(J=49Hz, CH,), 20.7 (J=82Hz, CH,), 209 (J=7.8Hz,
CH,), 21.7 (J=4.7Hz, CH,), 31.5 (J=6.3Hz, CH,), 49.9
(J=15.0Hz, CHs), 51.3 (J=8.0Hz, C), 61.7 (CH,), 94.9



(J=10.2Hz, C), 127.9 (J=98.8Hz, C), 156.0 (J=39.3Hz,
C), 176.1 (J=5.0Hz, C). *'P NMR (2429 MHz): § =22.8.
HRMS (ESI): m/z caled for C;¢H,ClOsP [M+H]"
367.8249, found 367.8260. Anal. Calcd for C,;¢H,3ClOsP: C
52.39, H 7.69. Found: C 52.46, H 7.77%.

Dimethyl (3-chloro-5,5-diethyl-4-methyl-6-oxo-2-propyl-
5,6-dihydro-2H-pyran-2-yl)-phosphonate 3e

Yellow oil, yield: 31%. Eluent for TLC: ethyl acetate:hexane
= 12, Ry 0.42; IR (neat, cm™'): 1119 (C-O-C), 1265
(P=0), 1620 (C=C), 1749 (C=0). '"H NMR (600.1 MHz):
5=0.79 (t, J=7.4Hz, 6H, MeCH,), 1.09 (t, J=7.1Hz, 3H,
MeCH,CH,), 1.52-1.77 (m, 4H, MeCH,), 1.76 (m, 2H,
MeCH,CH,), 203 (s, 3H, Me-C=), 227 (m, 2H,
MeCH,CH,), 3.83 (d, J=10.5Hz, 6H, MeO). *C NMR
(150.9 MHz): 6=10.9 (CH;), 11.8 (CH3), 152 (J=4.9Hz,
CH;), 19.1 (J=8.1Hz, CH,), 19.2 (CH,), 20.8 (CH,), 36.2
(J=6.2Hz, CH,), 48.3 (J=4.5Hz, C), 53.1 (J=14.7, CH,),
889 (J=1246Hz, C), 1271 (J=402Hz, C), 1385
(J=7.7Hz, C), 169.4 (J=7.8Hz, C). *'P NMR (242.9 MHz):
§=23.1. HRMS (ESI): m/z calcd for C;sH,,ClOsP [M +H]™"
353.7983, found 353.7989. Anal. Calcd for C,5H,cClOsP: C
51.07, H 7.43. Found: C 51.12, H 7.50%.

Ethyl 2-ethyl-2-(2-methoxy-5-methyl-2-oxo-4-
phenyliselenenyl-3-propyl-2,5-dihydro-1,2-oxaphosphol-
5-yl)-butanoate 2f

Yellow oil, yield: 42%. Eluent for TLC: ethyl acetate:hexane
= 1:2, R; 0.70; IR (neat, cm™"): 1020 (C-O-P), 1258 (P =0),
1437, 1489 (Ph), 1582 (C=C), 1730 (C=0). 'H NMR
(600.1 MHz): 6=0.82 (t, J=7.1Hz, 3H, MeCH,CH,), 0.90
(t J=68Hz, 6H, MeCH,), 121 (t J=7.0Hz, 3H,
MeCH,0), 1.42 (m, 2H, MeCH,CH,), 1.60 (s, 3H, MeC),
1.66-1.77 (m, 4H, MeCH,), 2.09 (m, 2H, MeCH,CH,), 3.69
(d, J=11.0Hz, 3H, MeO), 4.07 (m, 2H, MeCH,0),
7.32-7.45 (m, 5H, Ph). >C NMR (150.9 MHz): 6=10.0
(CH3), 14.6 (CH3), 15.0 (J=4.7Hz, CH;), 17.9 (J=4.7Hz,
CH,), 19.2 (J=8.1Hz, CH,), 199 (J=7.9Hz, CH;), 20.1
(J=4.6Hz, CH,), 32.0 (J=5.7Hz, CH,), 51.2 (J=14.5Hz,
CH,), 57.4 (J=8.0Hz, C), 61.5 (CH,), 96.1 (J=9.9Hz, C),
129.0 (CH), 129.2 (CH), 129.7 (C), 128.4 (J=97.7Hz, C),
138.2 (CH), 171.7 (J=15.0Hz, C), 176.9 (J=5.0Hz, C). >'P
NMR (2429 MHz): 6 =26.6. HRMS (ESI): m/z calcd for
C,,H3,0sPSe [M+H]" 488.4361, found 488.4369. Anal.
Calcd for C,,H3305PSe: C 54.21, H 6.82. Found: C 54.15,
H 6.75%.

Dimethyl (5,5-diethyl-4-methyl-6-oxo-3-phenylselenenyl-
2-propyl-5,6-dihydro-2H-pyran-2-yl)-phosphonate 3f

Yellow oil, yield: 27%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Ry 040; IR (neat, cm™'): 1118 (C-O-C), 1262
(P=0), 1440, 1488 (Ph), 1622 (C=C), 1752 (C=0). 'H
NMR (600.1 MHz): 6 =0.76 (t, ] =7.3 Hz, 6H, MeCH,), 1.09
(t, J=7.1Hz, 3H, MeCH,CH,), 1.46-1.68 (m, 4H, MeCH,),
1.61 (m, 2H, MeCH,CH,), 1.95 (s, 3H, Me-C=), 2.27-2.45
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(m, 2H, MeCH,CH,), 3.85 (d, J=10.5Hz, 6H, MeO),
741-7.50 (m, 5H, Ph). *C NMR (150.9 MHz): §=10.9
(CH,), 15.3 (J=4.8Hz, CH;), 16.1 (J=4.8Hz, CH;), 17.3
(J=8.1Hz, CH,), 17.5 (CH,), 19.5 (CH,), 35.2 (J=5.7Hz,
CH,), 53.1 (J=14.6Hz, CH;), 534 (J=47, C), 90.5
(J=125.4Hz, C), 110.5 (J=14.0Hz, C), 128.5 (CH), 128.8
(C), 129.6 (CH), 138.6 (CH), 138.9 (J=8.1Hz, C), 174.7
(J=7.8Hz, C). *'P NMR (242.9MHz): 6=23.9. HRMS
(ESI): m/z caled for C,H5,05PSe [M +H] ™" 374.4095, found
374.4089. Anal. Calcd for C,;H;,0OsPSe: C 53.28, H 6.60.
Found: C 53.22, H 6.64%.

Ethyl 2-ethyl-2-(2-methoxy-5-methyl-2-oxo-4-
phenylsulfenyl-3-propyl-2,5-dihydro-1,2-oxaphosphol-
5-yl)-butanoate 2g

Yellow oil, yield: 44%. Eluent for TLC: ethyl acetate:hexane
= 1:4, R; 0.73; IR (neat, cm™'): 1023 (C-O-P), 1256 (P = O),
1438, 1492 (Ph), 1580 (C=C), 1733 (C=0). 'H NMR
(600.1 MHz): 6=0.83 (t, J=7.0Hz, 3H, MeCH,CH,), 0.90
(t, J=6.8Hz, 6H, MeCH,), 122 (t, J=7.1Hz 3H,
MeCH,0), 1.66 (m, 2H, MeCH,CH,), 1.69 (s, 3H, MeC),
1.88-1.97 (m, 4H, MeCH,), 2.19 (m, 2H, MeCH,CH,), 3.74
(d, J=114Hz, 3H, MeO), 4.11 (m, 2H, MeCH,0),
7.19-7.43 (m, 5H, Ph). *C NMR (150.9 MHz): &=10.2
(CH;), 13.8 (CH;), 14.8 (J=4.6Hz, CH;), 20.3 (J=5.1 Hz,
CH,), 214 (J=8.0Hz, CH,), 22.6 (J=5.0Hz, CH,), 24.9
(J=7.9Hz, CHs), 32.4 (J=5.8Hz, CH,), 51.8 (J=14.2Hz,
CH,), 53.8 (J=7.8Hz, C), 61.6 (CH,), 91.9 (J=9.8Hz, C),
125.9 (CH), 127.0 (CH), 129.1 (CH), 130.7 (J=98.5Hz, C),
140.1 (J=5.0Hz, C), 160.1 (J=150Hz, C), 177.5
(J=4.8Hz, C). *P NMR (242.9MHz): §=26.7. HRMS
(ESI): m/z caled for Cy,H3,0sPS [M +H]" 441.5421, found
441.5416. Anal. Calcd for C,,H3305PS: C 59.98, H 7.55.
Found: C 60.06, H 7.61%.

Dimethyl (5,5-diethyl-4-methyl-6-oxo-3-phenylsulfenyl-2-
propyl-5,6-dihydro-2H-pyran-2-yl)-phosphonate 3g

Yellow oil, yield: 28%. Eluent for TLC: ethyl acetate:hexane
= 1:4, R 0.39; IR (neat, cm™'): 1117 (C-O-C), 1260
(P=0), 1439, 1493 (Ph), 1623 (C=C), 1750 (C=0). 'H
NMR (600.1 MHz): § =0.75 (t, ] =7.3 Hz, 6H, MeCH,), 1.13
(t, J=7.2Hz, 3H, MeCH,CH,), 1.66-1.87 (m, 4H, MeCH,),
1.90 (m, 2H, MeCH,CH,), 1.96 (s, 3H, Me-C=), 2.39-2.50
(m, 2H, MeCH,CH,), 3.86 (d, J=10.6Hz, 6H, MeO),
7.22-7.47 (m, 5H, Ph). )C NMR (150.9 MHz): 6=10.7
(CH3), 152 (J=4.7Hz, CH;), 19.4 (J=7.8Hz, CH,), 20.0
(J=4.6Hz, CH;), 20.3 (CH,), 21.6 (CH,), 36.4 (J=5.7Hz,
CH,), 504 (J=5.0Hz, C), 529 (J=5.1Hz, CH;), 84.7
(J=125.5Hz, C), 125.8 (CH), 127.3 (CH), 129.2 (CH), 129.5
(J=14.5Hz, C), 1350 (C), 141.7 (J=82Hz, C), 1747
(J=79Hz, C). P NMR (2429 MHz): §=23.9. HRMS
(ESI): m/z caled for Cy;H3,05PS [M +H]" 427.5155, found
427.5149. Anal. Caled for C,;H;,0sPS: C 59.14, H 7.33.
Found: C 59.20, H 7.37%.
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Ethyl 2-(4-bromo-3-butyl-2-methoxy-5-methyl-2-oxo-2,
5-dihydro-1,2-oxaphosphol-5-yl)-2-ethyl-butanoate 2h

Pale yellow oil, yield: 45%. Eluent for TLC: ethyl acetate:hex-
ane = 1:2, R; 0.76; IR (neat, cm™!): 1017 (C-O-P), 1255
(P=0), 1581 (C=C), 1732 (C=0). '"H NMR (600.1 MHz):
§=10.82 (m, 3H, Me(CH,);, 0.93 (t, J=6.8 Hz, 6H, MeCH),),
122 (t J=7.0Hz, 3H, MeCH,0), 127-137 (m, 4H,
Me(CH,),CH,), 1.71-1.90 (m, 4H, MeCH,), 1.74 (s, 3H,
MeC), 2.07-2.14 (m, 2H, Me(CH,),CH,), 3.79 (d,
J=11.4Hz, 3H, MeO), 4.06-4.13 (m, 2H, MeCH,0). '*C
NMR (150.9 MHz): 6 =10.0 (CH;), 14.2 (CH;), 14.4 (CH3),
19.1 (J=4.7Hz, CH,), 209 (J=47Hz, CH,), 22.0
(J=5.1Hz, CH,), 22.5 (J=8.1Hz, CH;), 29.7 (J=8.0Hz,
CH,), 30.1 (J=5.8Hz, CH,), 51.0 (J=7.8Hz, C), 524
(J=15.0Hz, CH;), 61.3 (CH,), 93.8 (J=9.7Hz, C), 126.4
(J=147.4Hz, C), 139.9 (J=50.5Hz, C), 176.7 (J=5.0Hz,
C). *'P NMR (242.9 MHz): 6 =27.2. HRMS (ESI): m/z calcd
for C,;H;,BrOsP [M + H]" 426.3028, found 426.3037. Anal.
Calcd for C,;H;3,BrOsP: C 48.01, H 7.11. Found: C 47.94,
H 7.06%.

Dimethyl (3-bromo-2-butyl-5,5-diethyl-4-methyl-6-oxo-
5,6-dihydro-2H-pyran-2-yl)-phosphonate 3h

Yellow oil, yield: 28%. Eluent for TLC: ethyl acetate:hexane
= 12, Ry 0.44; IR (neat, cm™'): 1121 (C-O-C), 1260
(P=0), 1622 (C=C), 1749 (C=0). '"H NMR (600.1 MHz):
5=0.79 (t, J=7.3Hz, 6H, MeCH,), 0.90 (m, 3H, Me(CH,)s,
1.42-1.78 (m, 8H, MeCH,, Me(CH,),CH,), 2.15 (s, 3H, Me-
C=), 2.27-2.50 (m, 2H, Me(CH,),CH,), 3.88 (d, J=10.6 Hz,
6H, MeO). *C NMR (150.9 MHz): =109 (CH,), 14.5
(CH3), 16.7 (J=5.0Hz, CH3), 18.4 (CH,), 20.6 (CH,), 21.7
(J=5.0Hz, CH,), 27.4 (J=7.7Hz, CH,), 33.8 (J=5.7Hz,
CH,), 49.2 (J=4.7Hz, C), 53.5 (J=14.6Hz, CH,), 87.4
(J=124.8Hz, C), 115.8 (J=50.4Hz, C), 141.9 (J=8.0Hz,
C), 170.9 (J=7.8Hz, C). *'P NMR (242.9 MHz): 6=126.7.
HRMS (ESI): m/z caled for Ci¢HpoBrOsP [M+H]'
412.2762, found 412.2748. Anal. Caled for C,cH,4BrOsP: C
46.73, H 6.86. Found: C 46.78, H 6.90%.

Ethyl 2-(3-butyl-2-methoxy-5-methyl-2-oxo-4-
phenylselenenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)-
2-ethyl-butanoate 2i

Yellow oil, yield: 41%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Rf 0.72; IR (neat, cm ™ '): 1022 (C-O-P), 1257 (P =0),
1437, 1487 (Ph), 1580 (C=C), 1727 (C=0). 'H NMR
(600.1 MHz): 6 =0.79 (t, J=6.6 Hz, 3H, Me(CH,)s, 0.90 (t,
J=7.1Hz, 6H, MeCH,), 1.21 (t, J=7.2Hz, 3H, MeCH,0),
124-134 (m, 4H, Me(CH,),CH,), 1.62 (s, 3H, MeC),

1.74-1.83 (m, 4H, MeCH,), 215-224 (m, 2H,
Me(CH,),CH,), 3.73 (d, J=11.1Hz, 3H, MeO), 4.03-4.10
(m, 2H, MeCH,0), 7.32-7.46 (m, 5H, Ph). “C NMR

(150.9 MHz): 6=10.2 (CH3), 14.0 (CH;), 14.4 (CH3), 18.0
(J=4.7Hz, CH,), 20.1 (J=4.6Hz, CH,), 20.7 (J=7.8Hz,
CH3), 21.6 (J=4.6Hz, CH,), 28.7 (J=7.6Hz, CH,), 30.3
(J=8.0Hz, CH,), 51.8 (J=14.6Hz, CH3), 57.0 (J=7.8Hz,

C), 61.8 (CH,), 96.7 (J=10.1Hz, C), 128.6 (J=100.1 Hz, C),
129.0 (J=4.7Hz, C), 129.2 (CH), 129.4 (CH), 137.4 (CH),
1726 (J=149Hz, C), 1768 (J=5.0Hz, C). *'P NMR
(2429 MHz): 6=28.0. HRMS (ESI): m/z «caled for
C,3H3605PSe [M—&—H]+ 502.4627, found 502.4641. Anal.
Calcd for C,3H3505PSe: C 55.09, H 7.04. Found: C 55.16,
H 6.99%.

Dimethyl (2-butyl-5,5-diethyl-4-methyl-6-oxo-3-
phenyliselenenyl-5,6-dihydro-2H-pyran-2-yl)-
phosphonate 3i

Yellow oil, yield: 25%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Ry 0.44; IR (neat, cm™'): 1117 (C-O-C), 1265
(P=0), 1441, 1491 (Ph), 1624 (C=C), 1748 (C=0). 'H
NMR (600.1 MHz): 6=0.76 (t, ] =7.3Hz, 6H, MeCH,), 0.89
(t, J=6.0Hz, 3H, Me(CH,);, 1.41-1.72 (m, 8H, MeCH,,
Me(CH,),CH,), 1.93 (s, 3H, Me-C=), 2.36-2.60 (m, 2H,
Me(CH,),CH,), 3.69 (d, J=11.1Hz, 6H, MeO), 7.47-7.53
(m, 5H, Ph). *C NMR (150.9 MHz): d=10.9 (CH,), 14.5
(CH3), 16.5 (J=5.1Hz, CH;), 17.3 (CH,), 19.5 (CH,), 22.2
(J=4.8Hz, CH,), 26.5 (J=7.9Hz, CH,), 33.2 (J=5.8Hz,
CH,), 53.4 (J=9.8Hz, C), 539 (J=14.6Hz, CH;), 90.4
(J=126.0Hz, C), 110.6 (J=15.0Hz, C), 128.0 (J=4.7Hz,
C), 128.7 (CH), 129.0 (CH), 134.7 (J=7.9Hz, C), 137.4
(CH), 174.5 (J=7.8Hz, C). *'P NMR (242.9 MHz): 6 = 25.9.
HRMS (ESI): m/z caled for C,Hs,OsPSe [M+H]"
488.4361, found 488.4377. Anal. Calcd for C,,H3305PSe: C
54.21, H 6.82. Found: C 54.14, H 6.74%.

Ethyl 2-(3-butyl-2-methoxy-5-methyl-2-oxo-4-
phenylsulfenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)-
2-ethyl-butanoate 2j

Yellow oil, yield: 42%. Eluent for TLC: ethyl acetate:hexane
= 1:4, R; 0.71; IR (neat, cm™'): 1021 (C-O-P), 1254 (P =0),
1439, 1490 (Ph), 1586 (C=C), 1729 (C=0). 'H NMR
(600.1 MHz): 6 =0.83 (t, J=6.7Hz, 3H, Me(CH,)s, 0.91 (t,
J=7.0Hz, 6H, MeCH,), 1.20 (t, J=7.2Hz, 3H, MeCH,0),
1.25-1.50 (m, 4H, Me(CH,),CH,), 1.64 (s, 3H, MeC),
1.83-2.00 (m, 4H, 2xMeCH,), 220-229 (m, 2H,
Me(CH,),CH,), 3.75 (d, J=11.4Hz, 3H, MeO), 4.07-4.12
(m, 2H, MeCH,0), 7.14-7.40 (m, 5H, Ph). *C NMR
(150.9 MHz): d=10.0 (CH;), 14.1 (CHs), 14.4 (CH3), 20.2
(CH,), 21.3 (J=5.1Hz, CH,), 22.5 (J=5.1Hz, CH,), 25.3
(J=8.1Hz, CHj), 302 (J=7.9Hz CH,), 30.6 (J=7.9Hz,
CH,), 524 (J=15.1Hz, CHj), 53.4 (J=7.8Hz, C), 61.8
(CH,), 91.4 (J=10.1Hz, C), 1251 (J=5.1Hz, C), 126.7
(CH), 129.2 (CH), 130.0 (J=99.4Hz, C), 136.1 (CH), 160.2
(J=147Hz, C), 1775 (J=5.0Hz, C). *'P NMR
(2429MHz): 6=269. HRMS (ESI): m/z «caled for
C3H360sPS [M+H]' 4555687, found 455.5661. Anal.
Caled for Cp3H3505PS: C 60.77, H 7.76. Found: C 60.84,
H 7.82%.



Dimethyl (2-butyl-5,5-diethyl-4-methyl-6-oxo-
3-phenyisulfenyl-5,6-dihydro-2H-pyran-2-yl)-
phosphonate 3j

Yellow oil, yield: 25%. Eluent for TLC: ethyl acetate:hexane
= 14, Ry 0.42; IR (neat, cm™!): 1122 (C-O-C), 1266
(P=0), 1438, 1486 (Ph), 1620 (C=C), 1751 (C=0). 'H
NMR (600.1 MHz): § =0.78 (t, J=7.5Hz, 6H, MeCH,), 0.89
(t, J=6.1Hz, 3H, Me(CH,);, 1.44-155 (m, 2H,
MeCH,(CH,),), 1.60-1.90 (m, 2H, MeCH,), 1.70-1.80 (m,
2H, MeCH,CH,CH,), 1.96 (s, 3H, Me-C=), 2.40-2.63 (m,
2H, Me(CH,),CH,), 3.87 (d, J=10.6Hz, 6H, (MeO),),
7.15-7.47 (m, 5H, Ph). *C NMR (150.9MHz): 6=10.7
(CH3;), 14.4 (CH;), 19.9 (CH,), 20.1 (J=4.7Hz, CH;), 21.7
(CH,), 22.4 (J=5.0Hz, CH,), 28.9 (J=7.8Hz, CH,), 33.6
(J=5.8Hz, CH,), 50.3 (J=5.0Hz, C), 53.7 (J=152Hz,
CH,), 84.9 (J=124.9Hz, C), 125.9 (C), 127.1 (CH), 129.4
(CH), 129.7 (J=14.6Hz, C), 134.8 (CH), 140.1 (J=8.0Hz,
C), 1755 (J=7.9Hz, C). 'P NMR (242.9 MHz): 6 =24.8.
HRMS (ESI): m/z calcd for C,,H5,05PS [M +H]| " 441.5421,
found 441.5445. Anal. Calcd for C,,H;305PS: C 59.98, H
7.55. Found: C 59.92, H 7.62%.

Ethyl 2-(4-bromo-2-methoxy-5-methyl-2-oxo-3-phenyl-
2,5-dihydro-1,2-oxaphosphol-5-yl)-2-ethyl-butanoate 2k

Pale yellow oil, yield: 46%. Eluent for TLC: ethyl acetate:hex-
ane = 1:2, R; 0.74; IR (neat, cm™'): 1019 (C-O-P), 1257
(P=0), 1444, 1491 (Ph), 1586 (C=C), 1728 (C=0). 'H
NMR (600.1 MHz):  =0.92 (t, J=6.8 Hz, 6H, MeCH,), 1.22
(t, J=7.0Hz, 3H, MeCH,0), 1.74 (s, 3H, MeC), 1.63-1.80
(m, 4H, MeCH,), 3.71 (d, J=11.4Hz, 3H, MeO), 4.00-4.09
(m, 2H, MeCH,0), 7.38-7.88 (m, 5H, Ph). *C NMR
(150.9 MHz): 6=10.2 (CH,), 13.8 (CHs), 19.1 (J=4.6Hz,
CH,), 21.1 (J=4.6Hz, CH,), 22.6 (J=8.1Hz, CHs), 51.4
(J=8.0Hz, C), 529 (J=15.0Hz, CH;), 61.2 (CH,), 95.1
(J=9.9Hz, C), 1252 (J=9.4Hz, CH), 128.7 (J=153.9Hz,
C), 129.6 (J=4.8Hz, C), 130.4 (J=5.0Hz, CH), 130.8 (CH),
140.5 (J=48.8Hz, C), 1749 (J=4.6Hz, C). >'P NMR
(2429MHz): 6=27.0. HRMS (ESI): m/z caled for
C1oH,7BrOsP [M+H]" 446.2924, found 446.2908. Anal.
Calcd for C;9H,¢BrOsP: C 51.25, H 5.89. Found: C 51.31,
H 5.93%.

Dimethyl (3-bromo-5,5-diethyl-4-methyl-6-oxo-2-phenyl-
5,6-dihydro-2H-pyran-2-yl)-phosphonate 3k

Yellow oil, yield: 30%. Eluent for TLC: ethyl acetate:hexane
= 12, Ry 0.43; IR (neat, cm™'): 1122 (C-O-C), 1263
(P=0), 1440, 1494 (Ph), 1618 (C=C), 1750 (C=0). 'H
NMR (600.1 MHz): 6=0.79 (t, J=7.5Hz, 6H, MeCH,),
1.40-1.69 (m, 2H, MeCH,), 2.09 (s, 3H, Me-C=), 3.81 (d,
J=10.5Hz, 6H, MeO), 7.47-7.85 (m, 5H, Ph). >*C NMR
(150.9 MHz): d=10.7 (CH;), 16.9 (CH3), 18.3 (CH,), 20.4
(CH,), 48.6 (J=4.6Hz, C), 53.9 (J=5.1Hz, CH;), 86.6
(J=126.8Hz, C), 114.8 (J=48.7Hz, C), 122.9 (J=7.8Hz,
CH), 127.9 (J=5.0Hz, CH), 131.9 (CH), 135.3 (J=10.1 Hz,
C), 1437 (J=8.0Hz, C), 171.4 (J=5.9Hz, C). *'P NMR
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(2429MHz): 6=24.1. HRMS (ESI): m/z «caled for
C,sH,sBrOsP [M+H]" 4322659, found 432.2644. Anal.
Calcd for C,;gH,,BrOsP: C 50.13, H 5.61. Found: C 50.20,
H 5.57%.

Ethyl 2-ethyl-2-(2-methoxy-5-methyl-2-oxo-3-phenyl-4-
phenylsulfenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)-
butanoate 21|

Yellow oil, yield: 43%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Rf 0.75; IR (neat, cm™'): 1021 (C-O-P), 1254 (P =0),
1441, 1492 (Ph), 1583 (C=C), 1730 (C=0). 'H NMR
(600.1 MHz): 6=0.92 (t, J=6.9Hz, 6H, MeCH,), 1.20 (t,
J=7.1Hz, 3H, MeCH,0), 1.65 (s, 3H, MeC), 1.80-2.01 (m,
4H, MeCH,), 3.69 (d, J=11.4Hz, 3H, MeO), 4.07-4.11 (m,
2H, MeCH,0), 7.16-7.79 (m, 10H, Ph). “C NMR
(150.9 MHz): 6 =10.3 (CH;), 14.4 (CHj), 204 (J=5.1Hz,
CH,), 22.5 (J=5.0Hz, CH,), 254 (J=7.8Hz, CHj), 53.2
(J=15.0Hz, CH,;), 53.7 (J=7.7Hz, C), 61.3 (CH,), 93.2
(J=10.1Hz, C), 1254 (J=7.7Hz, CH), 125.9 (CH), 127.0
(CH), 128.9 (J=100.1Hz, C), 129.1 (J=4.6Hz, CH), 129.9
(CH), 130.0 (J=9.7Hz, C), 130.2 (CH), 139.1 (J=5.0Hz,
C), 161.0 (J=4.7Hz, C), 177.3 (J=5.0Hz, C). *'P NMR
(2429MHz): 6=27.7. HRMS (ESI): m/z «caled for
C,5H;,0sPS [M+H]t 475.5583, found 475.5597. Anal.
Calcd for C,sH;,05PS: C 63.27, H 6.58. Found: C 63.19,
H 6.66%.

Dimethyl (5,5-diethyl-4-methyl-6-oxo-2-phenyl-3-
phenylsulfenyl-5,6-dihydro-2H-pyran-2-yl)-
phosphonate 3/

Yellow oil, yield: 29%. Eluent for TLC: ethyl acetate:hexane
= 1:2, Rf 0.41; IR (neat, cm™'): 1119 (C-O-C), 1266
(P=0), 1439, 1490 (Ph), 1622 (C=C), 1752 (C=0). 'H
NMR (600.1 MHz): 6=0.80 (t, J=7.5Hz, 6H, MeCH,),
1.60-1.86 (m, 2H, MeCH,), 1.98 (s, 3H, Me-C=), 3.89 (d,
J=10.4Hz, 6H, MeO), 7.13-7.75 (m, 10H, Ph). *C NMR
(150.9 MHz): 6=11.0 (CH;), 19.7 (CH,), 20.7 (J=4.7Hz,
CHj;), 21.9 (CH), 49.9 (J=4.8 Hz, C), 54.1 (J=5.0Hz, CH;),
849 (J=126.6Hz, C), 1253 (CH), 126.7 (J=4.6Hz, CH),
127.0 (CH), 127.5 (J=14.6Hz, C), 129.9 (J=7.8Hz, CH),
130.0 (CH), 131.3 (CH), 1356 (J=5.0Hz, C), 135.7
(J=9.9Hz, C), 141.7 (J=9.8Hz, C), 174.3 (J=4.8Hz, C).
*'P NMR (242.9 MHz): 6 =25.5. HRMS (ESI): m/z calcd for
C,4H300sPS [M+H]t 4615318, found 461.5326. Anal
Calcd for C,4H,905PS: C 62.59, H 6.35. Found: C 62.64,
H 6.42%.

Procedure for the synthesis of the (6E)- and (62)-
benzylidene-3,3,4-trimethyl-5-methylsulfenyl-3,6-
dihydro-2H-pyran-2-one 4 by the Horner-Wadsworth-
Emmons reaction of the dimethyl (4,5,5-trimethyl-3-
methylsulfenyl-6-oxo-5,6-dihydro-2H-pyran-2-yl)-
phosphonate 3a

To a suspension of sodium hydride (NaH) (60% dispersion
in mineral oil, 2.2 eq. 1.8 mmol) in THF (3 mL) was added a
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solution of the dimethyl 3a (460 mg, 0.8 mmol) in dry THF
(3mL) at room temperature. The reaction mixture was
stirred at the same temperature for 30 min. After the add-
ition of a solution of 1.4 eq. PhACHO (1.1 mmol) in 6 mL
THF to the mixture, the reaction mixture was heated at
40-50°C for 120min (reaction was monitored by TLC).
After that the mixture was quenched with 2N HCI,
extracted with ether, washed with saturated NaCl, and dried
over anhydrous sodium sulfate. After evaporation of the
solvent, the residue was purified by column chromatography
on a silica gel using hexane: ethylacetate (4:1) as an eluent
to give the pure product 4, which had the follow-
ing properties.

(6E)- and (6Z)-benzylidene-3,3,4-trimethyl-5-
methylsulfenyl-3,6-dihydro-2H-pyran-2-one 4

Pale yellow oil, yield: 63%. E:Z=6.4:1 (87:13). Eluent for
TLC: hexane:ethyl acetate = 4:1, R¢ 0.49; IR (neat, cm™Y):
1112 (C-0-C), 1443, 1487 (Ph), 1602, 1625 (C=C), 1748
(C=0). 'H NMR (600.1 MHz): 6 = 1.38 (s, 3H, Me,C), 1.59
(s, 3H, Me,C), 1.99 (s, 3H, Me-C=C), 2.25 (s, 3H, MeS),
667 (s, 1H, (E)-HC=C), 6.17 (s, 1H, (2)-HC=C),
7.17-7.89 (m, 5H, Ph). C NMR (150.9MHz): §=15.4
(CH,), 15.9 (CH,), 22.8 (CH,), 25.3 (CHs), 43.9 (C), 112.6
(E)-CH), 114.8 (2)-CH), 126.3 (E)-CH), 127.1 (Z)-CH),
127.6 (E)-CH), 128.3 (2)-CH), 128.8 (Z)-C), 129.7 (E)-C),
130.3 (E)-CH), 131.0 (Z)-CH), 134.4 (Z)-C), 135.1 (E)-C),
136.2 (C), 152.4 (C), 175.0 (C). HRMS (ESI): m/z calcd for
C16H190,S [M +H]t 275.3869, found 275.3895. Anal. Calcd
for C,H;30,S: C 70.04, H 6.61. Found: C 69.86, H 6.43%.

Conclusions

In conclusion, the reaction of the 5-(dimethoxyphosphoryl)-
alka-3,4-dienoates with electrophilic reagents occur via com-
petitive 5-endo-trig and 6-endo-trig cyclization giving mix-
tures of the 2,5-dihydro-1,2-oxaphosphol-2-ones and the
5,6-dihydro-2H-pyran-6-ones because of the participation of
the phosphonate and carboxylate neighboring group in the
cyclizations. Due to the easy availability of the starting mate-
rials, the convenient operation and mild conditions, the
good vyields and the usefulness of the heterocyclic com-
pounds prepared, the cyclization reactions may show poten-
tial and will be useful in organic synthesis as well as in their
application in target-oriented synthesis. Further investigation
on the chemistry of other bifunctionalized allenes for the
synthesis of different heterocyclic systems is being inten-
sively carried out in our laboratory. Moreover, results of an
initial investigation of the biological activity of the com-
pounds prepared were encouraging, and the antibacterial
and antifungal activities of selected compounds as well as
potential precursors of effective anticancer drugs are now
under investigation in our university and the results will be
reported in due course.
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