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SYNTHESIS OF A BRANCHED LOCKED NUCLEIC ACID (LNA)

ANALOGUE

Pawan K. Sharma � Department of Chemistry, Kurukshetra University,
Kurukshetra, India

Surender Kumar � Department of Chemistry, Kurukshetra University, Kurukshetra,
India and Nucleic Acid Center, Department of Physics and Chemistry, University of Southern
Denmark, Odense M, Denmark

Poul Nielsen � Nucleic Acid Center, Department of Physics and Chemistry,
University of Southern Denmark, Odense M, Denmark

� A 3′-C-branched LNA-type bicyclic nucleoside, containing a furanose ring locked in an N-type
conformation, was synthesized from a known 3-C-vinyl allofuranose derivative using a strategy re-
lying on the condensation with the nucleobase after the introduction of the branching hydroxymethyl
chain by our recently developed RuO4 based protocol. This branched LNA nucleoside has a potential
as a monomer for the functionalization of LNA.

Keywords Locked nucleic acid; N-type conformation; RuO4 oxidation

In nucleic acid chemistry, conformationally restricted nucleoside build-
ing blocks are powerful tools for the design of oligodeoxynucleotides
(ODNs) with selective and high-affinity recognition of complementary nu-
cleic acids. Furthermore, the structural control embedded by these build-
ing blocks opens for the design of functional nucleic acid architectures.[1]

Locked nucleic acid (LNA) represents the most absorbing example in
which the conformation of the furanose moiety is locked in an N-type (C3′-
endo) conformation (Figure 1).[2] The incorporation of one or more LNA
monomers into an ODN strongly increases the thermal stability of the du-
plex formed with single-stranded DNA or RNA complements.[2] LNA has
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FIGURE 1 An LNA nucleotide, a 3′-C -branched nucleotide and the target 3′-C -branched LNA
nucleotide.

been shown to be very useful for antisense applications,[3] and amino-LNA
has been used for the preparation of functionalized nucleic acids.[4]

3′-C -Branched nucleoside building blocks have been made to im-
prove either enzymatic stability of the ODN or the binding affinity to-
ward complementary targets (Figure 1).[5] In general, ODNs with 3′-C -
branched nucleotides exhibit slightly decreased hybridization properties
and improved stability against 3′-exonucleases. Furthermore, they contain
branching points which can be used as conjugation sites for a variety of func-
tional moieties such as peptides or other nucleotides.[5] A 3′-substituent is
expected to be oriented in a pseudoequatorial position, driving the sugar
pucker towards a C-2′-endo conformation, thus explaining why the binding
affinity toward RNA is somewhat impaired.[5] On the other hand, the 3′-C -
alkyl substituents (including the 3′-C -hydroxymethyl substituent)point into
the major groove of DNA:DNA and DNA:RNA duplexes and are reason-
ably well tolerated in the duplex structure.[5] Therefore, it was appealing to
study this structural feature in the context of an LNA monomer, in which
the locked N-type conformation forces the 3′-hydroxymethyl group into an
axial position. Longer alkyl groups in the same position have been studied
before leading to some decrease in thermal stability.[6] However, we envi-
sioned the smaller 3′-hydroxymethyl group to be better accommodated into
duplexes.

For the introduction of the hydroxymethyl branch at the β-face of C3′

of a nucleoside, a convergent synthesis strategy starting from 1,2:5,6-di-O-
isopropylidene-α-D-glucofuranose 1 was chosen, and the known 3-C -vinyl
derivative 2[7] was prepared in three steps. In our first strategy, this com-
pound was efficiently converted into a 3′-hydroxymethyl derivative by our
recently developed ruthenium protocol for oxidative cleavage.[8] However,
all attempt of making a successful preparation of the target nucleoside from
this strategy failed due to problems with the 3′-hydroxymethyl moiety in the
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SCHEME 1 Key: a) i) H5IO6, EtOAc; ii) HCHO, NaOH, NaBH4, 94%; b) NaH, BnBr, DMF, 60%;
c) i) BzCl, Pyridine; ii) RuCl3 × H2O, NaIO4, H2O, EtOAc, CH3CN; iii) NaBH4, H2O, THF; iv) NaIO4;
v) NaBH4, 71%; d) NaH, BnBr, DMF, 75%; e) i) 80% Aq. AcOH; ii) Ac2O, Pyridine, 91%; f) Thymine,
BSA, CH3CN, TMS-triflate, 93%; g) NaOCH3, MeOH, 86%; h) i) MsCl, CH2Cl2, Pyridine; ii) NaH,
Dioxane, 72%; i) H2, Pd(OH)2/C, EtOH, quantitative.

subsequent steps. Therefore, we decided to apply a second strategy in which
the vinyl group is cleaved later, and 2 was eventually converted to 3 through
oxidative cleavage of the C5–C6 bond and an aldol condensation. Selective
protection followed by the ruthenium based oxidative cleavage[8] and a new
benzylation afforded 4. Adapted standard conversions gave the nucleoside
5. A deprotection, a selective mesylation, ring-closure and a debenzylation
afforded the target nucleoside 6. Efforts towards the incorporation of 6 into
functionalised ODNs are in progress.
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