J.C.S. CHEM. COMM., 1972

Formation of Phospholimine and Novel Preparation of Benzofurazans by Thermolytic Rearrangement of N-(o-Nitroaryl)-1,2,5-triphenylphospholimines

By J. I. G. CADOGAN,* R. GEE, and R. J. SCOTT

(Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 311)

Summary Reactions of 1,2,5-triphenylphosphole with aryl-, arylsulphonyl-, methylsulphonyl-, ethoxycarbonyl-, and diphenylphosphinyl-azides readily give the novel 1,2,5-triphenylphospholimines (I; X = Ar, $ArSO_2$, $MeSO_2$, EtO_2C , Ph_2PO) which are thermally stable except for N-o-nitroaryl derivatives, e.g. (III), which give benzofurazans and 1,2,5-triphenylphosphole oxide, a reaction which does not occur with the corresponding P-triphenylor P-triethoxy-derivatives $Ph_3P=NAr$ or $EtO_3P=NAr$.

We describe a new class of organophosphorus compounds, the phospholimines (I), and also report a new synthesis of benzofurazan (II) via thermolytic rearrangement and fission of N-(o-nitrophenyl)-1,2,5-triphenylphospholimine (III).

Reactions of 1,2,5-triphenylphosphole (1 mol) with arylarylsulphonyl-, diphenylphosphinyl- methylsulphonyl-, and ethoxycarbonyl-azides (1.5 mol), in boiling dioxan or toluene at 100°, readily give the corresponding 1,2,5-triphenylphospholimines [I; X = Ph, p-Me·C₆H₄, p-NO₂·C₆H₄, o-NO₂·C₆H₄, p-I·C₆H₄, p-CO₂Et·C₆H₄, p-Me·C₆H₄, 2-NO₂-4-Me·C₆H₃, 2-NO₂-4-Me·O·C₆H₃, etc., p-Me·C₆H₄·SO₂, p-NO₂·C₆H₄·SO₂, Ph₂P(O), MeSO₂, EtO₂C] as crystalline solids in good yields† (usually 40—95%). N-Toluene-p-sulphonyl-1,2,5-triphenylphospholimine (I; X = p-Me·C₆H₄SO₂) was also obtained by reaction of chloramine-T with 1,2,5-triphenylphosphole.

These phospholimines are thermally stable, under normal conditions, with the exception of N-(o-nitrophenyl)-

1,2,5-triphenylphospholimine (III) which readily gives 1,2,5-triphenylphosphole oxide (95%) and benzofurazan (60%) on thermolysis in boiling mesitylene. The 4-methyl-2-nitrophenyl- and 4-methoxy-2-nitrophenyl-derivatives also give the corresponding benzofurazans.

Reaction as shown in the Scheme is therefore indicated. That the corresponding triethyl N-o-nitrophenylphosphorimidate [(EtO)₃P=NAr] and triphenyl-N-o-nitrophenylphosphinimine (Ph_3P =NAr) do not undergo this type of reaction indicates that the phospholimine ylide function is

relatively more polarised ($\equiv P-N-$). In accord with this N-o-nitrophenyl phosphoramidic trichloride ($Cl_3P=NAr$) also undergoes thermolytic rearrangement to benzofurazan.

(Received, 13th October 1972; Com. 1749.)

† Satisfactory analytical, mass- and/or n.m.r.-spectral data were obtained for all compounds described in this communication.