Luminescence of ytterbium in binuclear bis(porphyrin) complexes

Yurii V. Korovin,*^{*a*} Natalia V. Rusakova,^{*a*} Zinaida I. Zhilina,^{*b*} Yurii V. Ishkov,^{*b*} Sergey V. Vodzinsky^{*b*} and Vladimir P. Dotsenko^{*a*}

^a A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine.
Fax: +38 0482 652 012; e-mail: physchem@paco.net
^b I. I. Mechnikov Odessa National University, 65026 Odessa, Ukraine. Fax: +38 0482 235 214; e-mail: jvi@te.net.ua

10.1070/MC2002v012n04ABEH001638

Binuclear complexes of ytterbium with four asymmetric bis(porphyrins) have been obtained, and their spectral and luminescence properties have been investigated.

Ytterbium porphyrins are promising IR-luminescence probes in biomedical practice.^{1,2} However, there is almost no data on lanthanide complexes with covalently bound dimeric (or bis) porphyrins.³ Synthetic dimeric porphyrins are good model systems for studying electron-transfer processes and the redox, catalytic and optical properties of the porphyrin chromophore as a main constituent of important biological systems.⁴ We studied the spectral and luminescence properties of binuclear ytterbium complexes with four asymmetric bis(porphyrins) (Figure 1). The synthesis of the complexes was described previously.⁵

The complexes were prepared by a modified method⁶ through the interaction of a 15 to 20-fold excess of Yb(acac)₃ (acac is acetylacetone as an extra ligand) and free porphyrin base 1-4 in 1,2,4-trichlorobenzene on boiling under argon for 20-25 h depending on porphyrin. The purity of the compounds was controlled by UV, IR and ¹H NMR spectroscopy. The complexation with two metal centres was confirmed by the absorption spectra and elemental analysis data. The spectra of metalfree porphyrins (Specord M40 UV-VIS spectrophotometer) were characterised by the presence of an intense split Soret band and four Q-bands (I–IV) (Table 1). The ratio of the intensities of the Q-bands allowed us to assign these spectra to the etio type: IV > III > II > I. It is known that the splitting (*i.e.*, the ratio between the intensities of short-wave and long-wave components) of the Soret band in dimeric porphyrins can give qualitative information on their structure.⁷ The above ratios in the considered dimers are practically equal. This fact suggests an isotropic (intermediate between parallel and perpendicular) interlocation of porphyrins chromophores.⁷ Almost synchronous changes in the spectra of all complexes were observed as compared to the spectra of free bases. Thus, the spectra of complexes consist of two Q-bands different in intensity and a broadened Soret band with no splitting.

Luminescence was excited with a Xe-150 xenon lamp and a Nd³⁺:YAG laser (a SDL-1 spectrofluorimeter equipped with a photon-counting system and an attachment for phosphorescence measurements was used). The relative quantum yields of lumi-

Table 1 Absorption spectra of bis(porphyrins) **1–4** and their ytterbium complexes in DMF solutions ($c = 2 \times 10^{-5}$ mol dm⁻³).

	$\lambda_{\max}/nm \ (\log \varepsilon)$						
Ligand/ Complex	Soret band	<i>Q</i> -bands					
		Ι	II	III	IV		
1	419 (5.25)/	646 (3.91)	590 (3.99)	550 (4.08)	514 (4.30)		
	425 (5.27)						
(Yb) ₂ -1	423 (5.30)		595 (426)	557 (4.72)			
2	419 (5.80)/	646 (4.33)	591 (4.40)	550 (4.57)	515 (4.89)		
	426 (5.85)						
(Yb) ₂ -2	424 (5.86)		598 (4.71)	559 (5.23)			
3	414 (5.54)/	645 (3.92)	589 (4.05)	549 (4.27)	514 (4.53)		
	427 (5.53)						
(Yb) ₂ -3	426 (5.56)		596 (4.42)	558 (4.90)			
4	415 (5.64)/	644 (4.01)	588 (4.14)	548 (4.28)	513 (4.60)		
	426 (5.63)						
$(Yb)_{2}-4$	423 (5.70)		597 (4.39)	558 (4.95)			

Table 2 Luminescence	characteristics	of the	binuclear	bis(porphyrins)
complexes of ytterbium (295 K).			

Complex ^{<i>a</i>}	Position of T-levels, <i>E</i> /cm ⁻¹	$\Phi \times 10^{3 b}$	τ/μs ^c	$\Phi au^{-1}/10^{-3} \mathrm{s}^{-1}$
(Yb) ₂ -1	12980	4.1	5.1	0.80
$(Yb)_{2}-2$	12950	5.4	6.0	0.81
$(Yb)_{2}-3$	12995	2.7	3.7	0.73
$(Yb)_{2}-4$	12960	3.5	4.6	0.76
Yb-TPP	12890	4.2	5.1	0.82
Yb-T3PyP	12935	7.8	8.9	0.88
Yb-T4PyP	12920	10.1	10.9	0.93

^{*a*}DMF solutions ($c = 2 \times 10^{-5}$ mol dm⁻³). ^{*b*} $\lambda_{exc} = 425$ nm; luminescence spectra were corrected with a standard lamp. ^{*c*}Errors are ±10%.

nescence (Φ) of Yb^{III} ions in complexes (Zn tetraphenylporphyrin as a standard compound, $\Phi = 0.03$ in ethanol) and luminescence lifetime (τ) were determined as described elsewhere.⁸

The 4*f* luminescence of Yb^{III} ions in the test complexes is observed at 960–1010 nm ($\lambda_{max} = 980$ nm, ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition) on the excitation in a wide spectral range (~300–600 nm). The highest efficiency was detected on excitation at the maximum of the Soret band. The similarity of the excitation spectra of the 4*f* luminescence of Yb^{III} in porphyrin complexes to their absorption spectra [Figure 2, (Yb)₂–1 complex as an example] indicates that ytterbium ions take energy from the organic

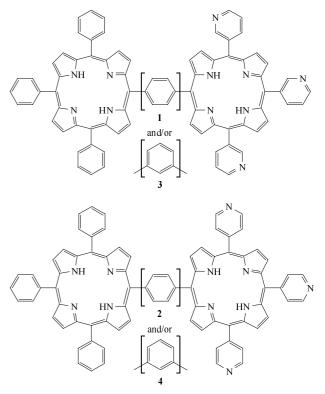
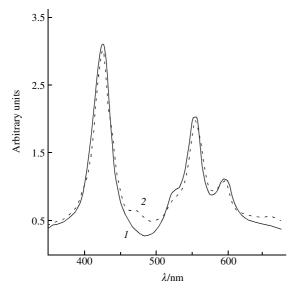



Figure 1 Structure of the ligands.

Figure 2 Electronic (1) absorption and (2) excitation spectra of $(Yb)_2$ -1 (2×10⁻⁵ mol dm⁻³ in DMF; $\lambda_{an} = 980$ nm).

moiety of the complex molecule [the energies of the triplet levels (*T*) of dimeric porphyrins are $\sim 13000 \text{ cm}^{-1}$].

The characteristics of the 4f luminescence of Yb^{III} in the complexes are given in Table 2. For comparison, data for complexes with meso-tetraphenylporphyrin (TPP) and mesotetra[3(4)-pyridil]porphyrin (T3PyP and T4PyP) are given. The data suggest that the luminescence in monomeric and dimeric complexes is somewhat higher in *p*-pyridil derivatives [e.g., Yb–T4PyP, $(Yb)_2$ –2, $(Yb)_2$ –4] than in *m*-pyridil derivatives $[e.g., Yb-T3PyP, (Yb)_2-1, (Yb)_2-3]$. However, we believe that the fact that 4f luminescence efficiency in dimers is somewhat lower than that in monomeric complexes is more important. The reason is the resonance Yb-Yb interaction, which manifests itself in spite of a rather long distance between two lanthanide centres. With the use of molecular mechanics calculations (the MM⁺ method, the HYPERCHEM 5.1 program) we found that the Yb-Yb distance in *m*-phenylene derivatives (Yb)₂-3 and $(Yb)_2$ -4 is equal to 10.8±0.1 Å. The Yb-Yb distance in p-phenylene derivatives (Yb)₂-1 and (Yb)₂-2 is 12.0±0.1 Å. These results are in good agreement with data obtained by other methods for structurally similar complexes.⁹ Evidently, the difference in distances explains the higher luminescence characteristics of *p*-phenylene derivatives. Note that analogous energytransfer processes were observed before in dinuclear lanthanide complexes with *p-tert*-butylcalix[8]arene¹⁰ at almost the same metal–metal distances. It should be noted that the value of Φ/τ indicates that the quantum efficiency of intramolecular energy transfer in the test complexes is high (higher than that in Yb crown-porphyrins⁸). The almost quenched molecular luminescence (manifested in non-metal porphyrins as two weakly structured bands in the regions 610–645 nm and 690–720 nm) proves this fact. Moreover, the quantum yields of the 4*f* luminescence of Yb^{III} ions and the luminescence lifetime are the highest.¹¹

References

- M. I. Gaiduk, V. V. Grigoryants, A. F. Mironov, V. D. Rumyantseva, V. I. Chissov and G. M. Sukhin, J. Photochem. Photobiol., 1990, 7, 15.
- 2 A. Beeby, R. S. Dickins, S. Fitzgerald, L. J. Govenlock, C. L. Maupin, D. Parker, J. P. Riehl, G. Siligardi and J. A. Gareth Williams, *Chem. Commun.*, 2000, 1183.
- 3 A. G. Coutsolelos, G. K. Tsikalos, C. P. Raptopoulou and A. Terzis, Abstracts of the 1st International Conference on Porphyrins and Phthalocyanines, Dijon, 2000, p. 380.
- 4 *The Porphyrin Handbook*, eds. K. M. Kadish, K. M. Smith and R. Guillard, Academic Press, New York, 1999, vol. 6.
- 5 Yu. V. Ishkov, Z. I. Zhilina and S. V. Vodzinsky, *Zh. Org. Khim.*, 2000, 36, 609 (*Russ. J. Org. Chem.*, 2000, 26, 641).
- 6 C. P. Wong, R. F. Venteicher and W. de W. Horrocks, Jr., J. Am. Chem. Soc., 1974, 96, 7149.
- 7 T. Nagata, A. Osuka and K. Maruyama, J. Am. Chem. Soc., 1990, 112, 3054.
- 8 Yu. Korovin, Z. Zhilina, N. Rusakova, V. Kuz'min, S. Vodzinsky and Yu. Ishkov, J. Porphyrins Phthalocyanines, 2001, 5, 481.
- 9 S. Eriksson, B. Källebring, S. Larsson, J. Martensson and O. Wennerström, *Chem. Phys.*, 1990, 146, 165.
- 10 P. Froidevaux and J. C. G. Bünzli, J. Phys. Chem., 1994, 98, 532.
- 11 M. P. Tsvirko, S. B. Meskova, V. Ya. Venchikov and D. V. Bolshoi, Opt. Spektrosk., 1999, 87, 950 (in Russian).

Received: 12th July 2002; Com. 02/1964