SYSTEMATISCHE UNTERSUCHUNGEN ÜBER DAS VERHALTEN VON ORGANOZINNVERBINDUNGEN GEGENÜBER FLÜSSIGEM SCHWEFELDIOXID

III*. SO_2 -DISPROPORTIONIERUNG BEI EINSCHIEBUNGSREAKTIONEN AN TETRAALKYLSTANNANEN

UDO KUNZE, EKKEHARD LINDNER UND JOHNSON KOOLA Lehrstuhl für Anorganische Chemie II der Universität Tübingen (Deutschland) (Eingegangen den 6. November 1972)

SUMMARY

When liquid SO_2 is allowed to react with the tetraalkyltin compounds $(CH_3)_4$ -Sn and $(C_2H_5)_4$ Sn at 60° , disproportionation of sulfur takes place resulting in the formation of the corresponding bis(trialkyltin) sulfates, $[R_3Sn]_2SO_4$, and alkanethiosulfonic acid S-alkyl esters, RSO_2SR ($R=CH_3$, C_2H_5). The course of the reaction is discussed.

ZUSAMMENFASSUNG

Lässt man bei $+60^{\circ}$ flüssiges SO_2 auf die Tetraalkylstannane $(CH_3)_4Sn$ und $(C_2H_5)_4Sn$ einwirken, so erfolgt eine Disproportionierung des Schwefels unter Bildung des entsprechenden Bis(trialkylzinn)sulfats $[R_3Sn]_2SO_4$ und des Alkanthiosulfonsäure-S-alkylesters RSO_2SR ($R=CH_3$, C_2H_5). Der Reaktionsablauf wird diskutiert.

EINLEITUNG

In den letzten Jahren erschien eine Reihe von Arbeiten, die sich mit dem Verhalten von Tetraorganozinn-Verbindungen gegenüber flüssigem SO_2 befasst haben $^{1-6}$. Im eigenen Arbeitskreis untersuchten wir speziell die Reaktionen von Tetraalkyl- $^{3.5}$ und Tetraarylstannanen mit flüssigem SO_2 in Abhängigkeit von der Reaktionstemperatur, der Reaktionszeit und dem Wassergehalt des Schwefeldioxids. Dabei fanden wir, dass sich im Temperaturbereich von -20 bis $+20^{\circ}$ mit trockenem SO_2 im Verlaufe von 1-2 Tagen im wesentlichen Mono- und Disulfinate bilden:

$$R_4 Sn + SO_2 \xrightarrow{-20/+20^{\circ}} R_3 SnO_2 SR$$
 (1)

^{*} Für II. Mitteilung siehe Ref. 1.

$$R_4 Sn + 2 SO_2 \xrightarrow{20^{\circ}} R_2 Sn(O_2 SR)_2$$
 (2)

(R=Alkylrest)

Erhöht man jedoch die Reaktionstemperatur auf 60°3.5 oder sogar auf 90°5, so beobachtet man bei den Tetraalkylverbindungen einen komplizierteren Reaktionsverlauf: Während sich im Falle von (CH₃)₄Sn bei 60° ausschliesslich [(CH₃)₃Sn]₂SO₄ bildet, erhält man bei der Einwirkung von SO₂ auf (C₂H₅)₄Sn mehrere Produkte, nämlich (C₂H₅)₃SnO₂SC₂H₅, (C₂H₅)₂Sn(O₂SC₂H₅)₂ und [(C₂H₅)₃Sn]₂SO₄. Beide Male entsteht jedoch ein Oxydationsprodukt, und zwar das entsprechende Bis(trialkylzinn)sulfat. Das dazu gehörende Reduktionsprodukt konnte dagegen bisher noch nicht charakterisiert werden. In dieser Arbeit berichten wir nun über die erfolgreiche Isolierung dieser Verbindung, wobei der Reaktionsverlauf diskutiert wird.

RESULTATE UND DISKUSSION

In einer früheren Veröffentlichung⁵ vermuteten wir, dass bei der Reaktion von Tetraalkylstannanen mit flüssigem SO₂ neben dem entsprechenden Oxydationsprodukt, Bis(trialkylzinn)sulfat, ganz allgemein Schwefel als Reduktionsprodukt auftritt:

$$2 R_4 Sn + 3 SO_2 \rightarrow (R_3 Sn)_2 SO_4 + R_2 SO_2 + S$$
 (3a)

$$R_4Sn + 3SO_2 \rightarrow R_2SnSO_4 + R_2SO_2 + S \tag{3b}$$

(R = Alkylrest)

Der einwandfreie Nachweis von elementarem Schwefel für $R = i-C_3H_7$ schien die Annahme zu stützen.

Zur Prüfung dieser Hypothese setzten wir jetzt $(CH_3)_4$ Sn wiederholt mit flüssigem SO_2 bei 60° um und untersuchten die entstehenden Reaktionsprodukte. Hierbei stellte sich heraus, dass sich neben dem Oxydationsprodukt $[(CH_3)_3Sn]_2SO_4$ in fast quantitativer Ausbeute jeweils der Methanthiosulfonsäure-S-methylester als Reduktionsprodukt bildet:

$$2 (CH_3)_4 Sn + 3SO_2 \frac{60^{\circ}}{61.807} [(CH_3)_3 Sn]_2 SO_4 + CH_3 SO_2 SCH_3$$
 (4)

Eine bei der Einwirkung von SO₂ auf (CH₃)₄Sn primäre Bildung von Sauerstoff und Methanthiosulfinsäure-S-methylester

$$2 (CH_3)_4 Sn + 3SO_2 \rightarrow [(CH_3)_3 Sn]_2 SO_4 + CH_3 SOSCH_3 + \frac{1}{2} O_2$$
 (5a)

und Disproportionierung⁷ des letzteren zu Methanthiosulfonsäure-S-methylester und Dimethyldisulfid gemäss

$$2 CH3SOSCH3 \rightarrow CH3SO2SCH3 + CH3SSCH3$$
 (5b)

konnte ausgeschlossen werden, weil sich bei der wiederholten gaschromatographischen Untersuchung der Reaktionsprodukte kein Sauerstoff nachweisen liess.

In ähnlicher Weise verhält sich Tetraäthylzinn. Neben den schon früher festgestellten Reaktionsprodukten (C₂H₅)₃SnO₂SC₂H₅, (C₂H₅)₂Sn(O₂SC₂H₅)₂ und

 $[(C_2H_5)_3Sn]_2SO_4$ wurde ebenfalls ein Reduktionsprodukt, nämlich der entsprechende Äthanthiosulfonsäure-S-äthylester, isoliert:

$$2(C_2H_5)_4Sn + 3SO_2 \xrightarrow{60^{\circ}} [(C_2H_5)_3Sn]_2SO_4 + C_2H_5SO_2SC_2H_5$$
 (6)

Die nach Gl. (4) und (6) erhaltenen Ester RSO₂SR (R=CH₃⁸, C₂H₅⁹) sind bereits beschrieben worden. Zum Vergleich wurde CH₃SO₂SCH₃ nach einer bekannten Methode⁸ dargestellt. Die Identität beider Verbindungen ergab sich durch die Elementaranalyse, das IR-Spektrum¹⁰ und das ¹H-NMR-Spektrum^{11,12}.

In Tabelle 1 sind einige charakteristische IR-Frequenzen der Thioester zusammengestellt.

Die SO₂-Valenzschwingungen liegen in dem für Sulfone zu erwartenden Bereich. Die entsprechenden ¹H-NMR-Daten gehen aus Tabelle 2 hervor.

Für die α_1 - und α_2 -Methylenprotonen des Thioesters $C_2H_5SO_2SC_2H_5$ beobachtet man im ¹H-NMR-Spektrum erwartungsgemäss zwei nahe beieinanderliegende Quartetts, die sich teilweise überlagern. Der Unterschied in der chemischen Verschiebung ist aber wesentlich geringer als im Methylester $CH_3SO_2SCH_3$. Die β_1 - und β_2 -Methylprotonen erscheinen dagegen nur als ein Triplett, die chemische Verschiebung ist also für beide Methylgruppen gleich.

Ein Vergleich der Tetraorganozinn-Verbindungen zeigt, dass nur solche

TABELLE 1 EINIGE CHARAKTERISTISCHE IR-FREQUENZEN (in cm $^{-1}$) DER THIOESTER RSO $_2$ SR (R=CH $_3$, C $_2$ H $_5$) (FILMSPEKTRUM)

-	$v_{as}(SO_2)$	$v_s(SO_2)$	v(CS)	$\delta(SO_2)$	
$R = CH_3$	1335 sst 1310 sst	1141 sst	752 st	495 sst	
$R = C_2H_5$	1325 sst	1133 sst	712 m-st	495 sst	

TABELLE 2 VERGLEICHENDE ZUSAMMENSTELLUNG DER KOPPLUNGSKONSTANTEN UND CHEMISCHEN VERSCHIEBUNGEN (TMS-STANDARD) DER THIOESTER, RSO $_2$ SR (R=CH $_3$, C $_2$ H $_5$)

	CH ₃ -SO ₂ S-CH ₃		CH_3 - CH_2 - SO_2 S- CH_2 - CH_3			
	1	2	β_1	$\tilde{\alpha}_1$	α_2	β_2
Kopplungs- konstante J(Hz)		$J(\mathcal{H}_{a_1},$	$J(H_{x_1}, H_{\beta_1}) 8; J(H_{x_2}, H_{\beta_2}) 8$			
Chem. Ver- schiebung (in \(\tau\)-Werten)	6.71	7.31	8.58	6.56	6.87	8.58

Tetraorganostannane ein Sulfat zu bilden vermögen, die auch ein Monosulfinat liefern. So erhält man z.B. aus Arylzinnverbindungen durch SO₂-Einschiebung weder Monosulfinat noch Sulfat. Sowohl im Monosulfinat als auch im Sulfat liegt eine R₃Sn-Einheit vor. Diese Tatsachen führten uns zunächst zu der Vermutung, dass die Sulfatbildung über die Stufe des Monosulfinats verläuft:

$$R_4 Sn + SO_2 \rightarrow R_3 SnO_2 SR$$
 (7)

$$2 R_3 SnO_2 SR + SO_2 \rightarrow \lceil R_3 Sn \rceil_2 SO_4 + RSO_2 SR \tag{8}$$

Zur Überprüfung liessen wir $(CH_3)_4Sn$ zwei Tage bei -30° mit flüssigem SO_2 reagieren. Aus dem Reaktionsprodukt wurde quantitativ $(CH_3)_3SnO_2SCH_3$ isoliert. Das IR-Spektrum zeigt keine Bande bei 1100 cm^{-1} ($v_{as}(SO_4)$), wie sie für die SO_4^{2-} -Gruppe charakteristisch ist. Das so erhaltene Monosulfinat wurde nun bei 60° einen weiteren Tag mit flüssigem SO_2 umgesetzt. Die Umwandlung in das Sulfat war indessen unvollständig; das Reaktionsprodukt bestand aus einem Gemisch aus $(CH_3)_3$ - SnO_2SCH_3 , $[(CH_3)_3Sn]_2SO_4$ und $CH_3SO_2SCH_3$. Eine ähnliche Beobachtung machten wir bei der analogen Reaktion von $(C_2H_5)_3SnO_2SC_2H_5$ mit SO_2 bei 60° .

Aus diesem Befund kann man schliessen, dass die Bildung des Bis(trimethylzinn)sulfats auf zwei verschiedenen Wegen erfolgt, je nachdem, ob man von Tetramethylzinn
oder Trimethylzinn-methansulfinat ausgeht. Im Falle des Tetraäthylzinns lässt sich
dies jedoch nicht mit Bestimmtheit sagen; hier wäre sogar der Reaktionsverlauf über
das Monosulfinat möglich, da die Ausbeuten unabhängig vom Ausgangsprodukt
(Tetraäthylzinn oder Triäthylzinnsulfinat) etwa gleich hoch sind.

Die Bildung des Bis(trimethylzinn)sulfats aus $(CH_3)_4$ Sn verläuft möglicherweise nach einem radikalischen Mechanismus. Höppner und Lassmann¹³ zeigten nämlich, dass bei der Röntgenbestrahlung von Tetraalkylstannanen nur $(CH_3)_4$ Sn, nicht aber $(C_2H_5)_4$ Sn, ein R₃Sn-Radikal zu bilden vermag, wie aus den ESR-Spektren hervorgeht. Zur Aufklärung des Mechanismus sind weitere Untersuchungen im Gange.

EXPERIMENTELLES

Alle Reaktionen wurden in Einschlussrohren von etwa 50 ml Inhalt durchgeführt. Wasserfreies SO_2 erhält man durch Trocknen des Gases mit konz. Schwefelsäure und P_4O_{10} . Die Darstellung der Tetraalkylstannane erfolgte nach bekannten Methoden^{14,15}.

(1) Reaktion von $(CH_3)_4$ Sn mit flüssigem SO_2 bei 60°

13.1 g (73.5 mMol) (CH₃)₄Sn werden mit 20–25 ml flüssigem SO₂ bei 60° einen Tag umgesetzt. Nach dem Entfernen des überschüssigen SO₂ wäscht man den Rückstand gründlich mit Äther. Das ätherunlösliche Produkt erweist sich aufgrund der Analyse und des IR-Spektrums als Bis(trimethylzinn)sulfat. Ausb. 97%. Beim Einengen des ätherischen Filtrats entsteht ein gelbes Öl, aus dem man durch wiederholte Destillation unter vermindertem Druck den farblosen, viskosen Methanthiosulfonsäure-S-methylester in 92% Ausb. erhält.

Bis(trimethylzinn)sulfat. (Gef.: C, 17.01; H, 4.37; S, 7.57. $C_6H_{18}O_4SSn_2$ ber.: C, 17.01; H, 4.28; S, 7.57%.)

Methanthiosulfonsäure-S-methylester. (Gef.: C, 19.87; H, 5.84; S, 50.30. $C_2H_6O_2S_2$ ber.: C, 19.03; H, 4.79; S, 50.80%.)

(2) Reaktion von $(CH_3)_4$ Sn mit flüssigem SO_2 bei -30°

5 g (CH₃)₄Sn (28 mMol) werden mit flüssigem SO₂ zwei Tage bei -30° umgesetzt. Das Reaktionsprodukt wird wie oben aufgearbeitet und ergibt quantitativ (CH₃)₃SnO₂SCH₃.

(3) Reaktion von (CH₃)₃SnO₂SCH₃ mit flüssigem SO₂ bei 60°

5 g (20.6 mMol) (CH₃)₃SnO₂SCH₃ werden bei 60° einen Tag mit flüssigem SO₂ umgesetzt, dann arbeitet man das Reaktionsgemisch wie vorstehend beschrieben auf. Der Rückstand erweist sich als Gemisch aus [(CH₃)₃Sn]₂SO₄ und nicht umgesetztem (CH₃)₃SnO₂SCH₃; aus dem ätherischen Filtrat erhält man den Ester CH₃SO₂SCH₃. Die Reaktionsprodukte wurden IR-spektroskopisch identifiziert.

(4) Reaktion von $(C_2H_5)_4$ Sn mit flüssigem SO_2 bei 60°

10 g (42.7 mMol) $(C_2H_5)_4$ Sn werden mit flüssigem SO_2 einen Tag bei 60° umgesetzt. Nach dem Entfernen des überschüssigen SO_2 wird das Produkt gründlich mit Äther gewaschen. Der Rückstand besteht aus einem Gemisch aus $(C_2H_5)_2$ Sn- $(O_2SC_2H_5)_2$ und $[(C_2H_5)_3Sn]_2SO_4$. Das ätherische Filtrat ergibt nach dem Einengen ein zähes, gelbes Öl, in dem sich aufgrund des IR-Spektrums die Komponenten $(C_2H_5)_3SnO_2SC_2H_5$ und $C_2H_5SO_2SC_2H_5$ nachweisen lassen. Der Äthanthiosulfonsäure-S-äthylester wird vom Monosulfinat durch fraktionierte Destillation unter vermindertem Druck abgetrennt; eine quantitative Trennung gelang jedoch nicht.

Äthanthiosulfonsäure-S-äthylester. (Gef.: C, 31.49; H, 6.11; S, 39.43. $C_4H_{10}O_2$ -S₂ ber.: C, 31.13; H, 6.54; S, 41.58%.)

(5) IR- und ¹H-NMR-Spektren

Die IR-Spektren wurden mit einem Beckman IR 12-Gitterspektrometer vermessen.

Die Aufnahme der ¹H-NMR-Spektren erfolgte mit den Kernresonanz-Spektrometern A-60 A von Varian (60 MHz) bzw. HFX 90 von Bruker (90 MHz).

DANK

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, für die grosszügige finanzielle Förderung dieser Untersuchungen. Unser Dank gilt ferner dem Katholischen Akademischen Ausländer-Dienst für die Gewährung eines Stipendiums an J.K.

LITERATUR

- 1 U. Kunze, E. Lindner und J. Koola, J. Organometal. Chem., 40 (1972) 327.
- 2 G. Vitzthum, U. Kunze, E. Lindner, J. Organometal. Chem., 21 (1970) P38.
- 3 E. Lindner, U. Kunze, G. Ritter und A. Haag, J. Organometal. Chem., 24 (1970) 119.
- 4 C. W. Fong und W. Kitching, J. Organometal. Chem., 22 (1970) 95; 22 (1970) 107.
- 5 U. Kunze, E. Lindner und J. Koola, J. Organometal. Chem., 38 (1972) 51.
- 6 W. Kitching, C. W. Fong und A. W. Smith, J. Amer. Chem. Soc., 91 (1969) 767.
- 7 La V.D. Small, J. H. Bailey und C. J. Cavallito, J. Amer. Chem. Soc., 69 (1947) 1710.
- 8 P. Allen Jr. und J. W. Brook, J. Org. Chem., 27 (1962) 1019.

- 9 La V.D. Small, J. H. Bailey und C. J. Cavallito, J. Amer. Chem. Soc., 71 (1949) 3565.
- 10 I. B. Douglass und B. S. Farah, J. Org. Chem., 24 (1959) 973.
- 11 I. B. Douglass, F. J. Ward und R. V. Norton, J. Org. Chem., 32 (1967) 324.
- 12 G. R. Petit, I. B. Douglass und R. A. Hill, Can. J. Chem., 42 (1964) 2357.
- 13 K. Höppner und G. Lassmann, Z. Naturforsch. A, 23 (1968) 1758.
- 14 W. F. Edgell und C. H. Ward, J. Amer. Chem. Soc., 76 (1954) 1169.
- 15 G. J. M. van der Kerk und J. G. A. Luijten, Org. Synth., 36 (1956) 86.