Facile Ring Expansions of α-Halomethyl β-Keto Esters Mediated with SmI₂

So Hee Chung, Min Seok Cho, Jun Young Choi, Doo Won Kwon, Yong Hae Kim*

Center for Molecular Design and Synthesis, Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusong Dong, Yusong Gu, Taejon, 305-701, Korea

Fax +82-42-869-5818; E-mail: kimyh@mail.kaist.ac.kr

Received 7 May 2001

Key words: SmI₂, ring expansion, bicyclic compounds, β -keto esters, NiI₂

Ring expansion reactions give useful carbocyclic or heterocyclic intermediates in organic chemistry. Epoxide¹ and aziridines² were expanded to 5- or 6- membered heterocyclic compounds through cycloaddition or coupling reactions. Nitrogen or oxygen atom insertions in carbonyl derivatives are also well known to give the corresponding lactones³ or lactams.⁴ The ring expansions of many carbocyclic substrates have been also examined to result in one to three carbon-expanded products.⁵ Especially, the carbon expanding reactions have been focussed to generate medium and large rings. For the synthetic utility, medium and larger rings have become important to explore and develop new avenues of approach to appropriately functionalized rings.⁶ The general methods of medium and larger ring expansions have been studied by various groups. Most of them proceed via anionic procedure.⁷ Recently, Dowd and his coworkers reported the radical procedure for the ring expansion using tin reagent.⁸ Later, the mechanistic study of this free-radical reaction has been established.⁹ Ring expansion reaction of cyclobutanone was reported via addition of diiodomethane.¹⁰

Samarium diiodide which is a strong one-electron donor have resulted in versatile synthetic utility in organic synthesis.^{11, 12} Formation of a ketyl radical¹³ of a ketone with SmI₂ and a radical or an anion of an alkyl halide with SmI₂¹¹ has been well known. In our earlier work,¹⁴ we reported that functionalized cyclopropyl ketones underwent reductive ring opening with SmI₂ in the presence of proton source. On the supposition that formation of a cyclopropane intermediate by radical-radical coupling or through anion and then provides some interesting products by cleavage of cyclopropane, α -iodomethyl β -keto ester derivatives have been examined to react with SmI₂. Treatment of α -iodomethyl β -keto esters with SmI₂ in the presence of catalytic amount of NiI₂ in THF afforded one carbon-ring expanded products in good yields under mild reaction conditions at -78 °C in short reaction time.

The α -iodomethyl β -keto ester derivatives **2** were readily synthesized by alkylation of commercially available β -keto esters with diiodomethane in the presence of NaH

in DMF.¹⁵ A typical experimental procedure is as follows. A THF solution of **2** (0.23 mmol) was diluted in THF (4.5 mL) and then slowly added to a SmI₂ solution (0.5 mmol) in 5 mL THF) in the presence of NiI₂ (0.015 mmol) or HMPA (1.38 mmol) at -78 °C. The reaction mixture was stirred at -78 °C for ca. 10 min and then quenched with a saturated NH₄Cl solution (5 mL). The product was extracted with ether, dried over MgSO₄, and then concentrated to give a crude product **3** which was purified by silica gel chromatography (silica gel: 230 – 400 mesh, ethyl acetate : *n*-hexane = 1: 5).¹⁶

Scheme 1

The additives of HMPA,¹⁷ DMPU,¹⁸ Fe(DBM)₃,¹⁹ and NiI₂²⁰ are known as the activators in SmI₂ reactions. HMPA is well used, but not promising because it is highly toxic. Thus, these four activators are compared in this ring expansion reaction. The results are shown in Table 1.

Table 1 SmI₂ Mediated Ring Expansion Reaction with Additives

a) Yields were determined by ¹H NMR.

Abstract: Treatment of α -halomethyl β -keto esters with SmI₂ afforded their corresponding one-carbon expanded products with the aids of HMPA or NiI₂.

A catalytic amount of $Fe(DBM)_3$ works well, but the reaction time is long (180 min) and the yield is low (76%). Some data obtained from the reactions using catalytic amount of NiI₂ were added. The results obtained are summarized in Table 2.

Table 2 Ring Expansions of $\alpha\text{-Iodomethyl}\ \beta\text{-Keto}$ Esters with $SmI_2{}^a$

a) Isolated yields. b) The amount of HMPA is 6 eq. c) 1 H NMR yield. d) The ratio of the seven membered ring and the reduced alcohol is ca. 90: 10 by 1 H NMR.

Without using an additive, the yield was low (run 1, 27%). In the most of reactions, the reduced side product of alcohol could not be obtained. But the ratio of the ring-expanded seven membered ring and the reduced alcohol was determined by ¹H NMR (ca. 90:10 in run 7). An acyclic α -halomethyl- β -ketoester did not give a chain extension product; only reduction occurred to give an alcohol.

It is noteworthy that under the same reaction conditions, ethyl(α -iodopropyl) pentyl β -keto ester **4** reacted with SmI₂ to afford a bicyclic compound **7** as shown in Scheme 2.

Recently, a mechanism on the ring-expansion of α -bromomethyl benzocyclic β -keto ester with SmI₂ has been proposed.²¹ Although the reaction mechanism is not clear, there are two possible pathways. The first is a radical pathway similar to the tin induced radical ring expansion.⁸ Two equivalent of SmI_2 may generate the ketyl radical and the alkyl radical. The cyclopropane intermediate A is generated by coupling of two radicals each other. The intermediate A may rearrange to the product via cleavage of bicyclic C-C bond due to a cyclopropane C-C bond activation by CO_2Et group.¹⁴ The other is an anionic pathway. The alkyl radical reduced to an anion of samarium Grignard type, which attack the cyclopropane intermediate like the case of Scheme 3. The present reaction may be widely available for constructing medium- and largesized ring compounds and has an advantage that NiI₂ (0.05 equiv) is the better activator than HMPA in this reaction.

Acknowledgement

This work was generously supported by the Korea Research Foundation.

Reference and Notes

 (a) Kihara, N.; Nakawaki, Y.; Endo, T. J. Org. Chem. 1995, 60, 473. (b) Itoh, A.; Hirose, Y.; Kashiwagi, H.; Masaki, Y. Heterocycles 1994, 38, 2165. (c) Karikomi, M.; Yamazaki, T.; Toda, T. Chem. Lett. 1993, 1965. (d) Piotti, M. E.; Alper, H. J. Org. Chem. 1997, 62, 8484.

- (2) (a) Wolf, M. S.; Patta, D.; Auke, J. J. Org. Chem. 1997, 62, 654. (b) Colham, J.; Collis, A. J.; Moald, R. L. Tetrahedron Lett. 1995, 36, 3557. (c) Nada, U. K.; Busu, N. Tetrahedron 1993, 49, 7787.
- (3) (a) Chida, N.; Tobe, T.; Ogawa, S. *Tetrahedron Lett.* 1994, *35*, 7249. (b) Genicot, C.; Ghosez, L. *Tetrahedron Lett.* 1992, *33*, 7357.
- (4) (a) Laurent, A.; Jaquqnt, P.; Di Martino, J. L.; Hamelin, *Chem. Commun.* 1995, 1105. (b) Gracia, G. L.; Milligan, J. A. J. Am. Chem. Soc. 1995, 118, 8047.
- (5) (a) Tsukayama, M.; Utsumi, H.; Kunugi, A. Chem. Commun. 1995, 615. (b) Rude, B. M.; Kulkarni, V. R. J. Org. Chem. 1995, 60, 3084. (c) Kulinkovich, G.; Sorokin, V. L. Russ. J. Org. Chem. 1994, 30, 196. (d) Zhang, W.; Hua, Y.; Geib, S. J.; Dowd, P. Tetrahedron 1994, 50, 12579. (e) Feldmann, K. S.; Berven, H. M.; Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364. (f) Lee, P. H.; Kim, J. S.; Shim, Y. C. Tetrahedron Lett. 1993, 34, 7583. (g) Booker, K. I.; Thompson, D. F. Tetrahedron Lett. 1993, 34, 7291. (h) Mitani, M.; Kobayashi, Y. Bull. Chem. Soc. Jpn. 1994, 67, 284. (i) Herndon, J. W.; Zora, M. Synlett 1993, 363.
- (6) Dowd, P.; Zhang, W. Chem. Rev. 1993, 93, 2091.
- (7) Trost, B. M.; Fleming, I. Eds. *Comprehensive of Organic Chemistry*, Oxford **1991**, *Vol 1*, 33.
- (8) Dowd, P.; Choi, S. C. J. Am. Chem. Soc. 1987, 109, 3493.
- (9) Chatgilialogh, C.; Timikhin, V. T.; Ballestri, M. J. Org. Chem. 1998, 63, 1327.
- (10) Fukuzawa, S.; Tsuchimoto, T. *Tetrahedron Lett.* **1995**, *36*, 5937.
- (11) (a) Girard, P.; Namy, J. L.; Kagan. H. B. J. Am. Chem. Soc. 1980, 102, 2693. (b) Kagan, H. B.; Namy, J. L. Tetrahedron Lett. 1986, 27, 3243.
- (12) (a) Molander, G. A. Chem. Rev. 1992, 92, 307. (b) Trost, B.
 M. Comprehensive of Organic Synthesis 1991, vol 1, 253.

(c) Molander, G. A.; Harris, C. R. *Tetrahedron* **1998**, *54*, 3321.

- (13) (a) Curran, D. P.; Fevig, T. L.; Jasperse, C. P.; Totleben, M. J. Synlett 1992, 943. (b) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573.
- (14) Kim, Y. H.; Lee. I. S. Heteroatom Chemistry 1992, 3, 509.
- (15) For the synthesis of starting material 2, see; Beckwith, A. L. J.; O'Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565.
- (16) Ethyl 3-oxocyclohexanone carboxylate, **3**: ¹H NMR (400MHz, CDCl₃, TMS) δ 1.21-1.25 (t, 3H), 1.71-1.82 (m, 2H), 2.01- 2.07 (m, 2H), 2.29-2.35 (m, 2H), 2.51-2.53 (m, 2H), 2.75-2.82 (m, 1H), 4.10-4.16 (q, 2H); ¹³C NMR (100MHz, CDCl₃, TMS) δ 14.1, 24.4, 27.7, 40.9, 43.1, 43.2, 60.9, 173.7, 209.3. Ethyl 3-oxocycloheptanone carboxylate, **3**: ¹H NMR (400MHz, CDCl₃, TMS) δ 1.21-1.25 (t, 3H), 1.55-2.10 (m, 6H), 2.45-2.49 (m, 2H), 2.64-2.69 (m, 2H), 2.74-2.82 (m, 1H), 4.09-4.15 (q, 2H); ¹³C NMR (100MHz, CDCl₃, TMS) δ 14.1, 23.9, 28.3, 33.2, 41.3, 43.9, 45.5, 60.9, 174.5, 212.2.
- (17) Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987, 1485.
- (18) Hasegawa, E.; Curran, D. P. J. Org. Chem. 1993, 58, 5008.
- (19) Molander, G. A.; McKie, J. A. J. Org. Chem. **1991**, *56*, 4112.
- (20) (a) Machrouhi, F.; Hamann, B.; Namy, J. L.; Kagan, H. B. *Synlett* **1996**, 633. (b) Krief, A.; Laval, A.-M.; *Chem. Rev.* **1999**, *99*, 745.
- (21) Hasegawa, E.; Kitazume, T.; Suzuki, K.; Tosaka, E. *Tetrahedron Lett.* **1998**, *39*, 4059.

Article Identifier:

1437-2096,E;2001,0,08,1266,1268,ftx,en;Y09601ST.pdf