Nitrofuran Antibacterials

hr. The solvent was evapd, and the solid residue stirred with 10% NaOH soln and extd with CHCl₃. Following the usual work-up, a dark brown oil (7.2 g) was obtained. A sample of this oil was shown by gc analysis^{##} to be a mixt of 4a and 5a (9:1 ratio). The main portion was chromatographed on neutral alumina (Woelm act. I) packed in C₆H₆. Elution with Et₂O gave an oil which was converted to 0.35 g of the fumarate salt of 5b. Similarly, elution with Me₂CO-Et₂O and Me₂CO gave 3.5 g of 4a fumarate.

B. Basic Condition. (a) A soln of 0.058 mole of NaH (dispersed in oil) in 80 ml of anhyd DMSO under N₂ was stirred for 30 min. After 1.5 hr following the introduction 8.0 g (0.046 mole) of 3a, a soln of 9.15 g (0.064 mole) of MeI in 20 ml of DMSO was slowly added with external cooling keeping the temp below 20°. After standing at 25° for 18 hr, the mixt was poured into crushed ice and extd with CHCl₂. The CHCl₃ soln was washed with H₂O to remove the DMSO and evapd to dryness leaving an oil. A sample was shown by gc analysis^{##} to be a mixt of 4a (24%), 5a (56%), 6 (17%, retention time, 10.8 min) and an unidentified material (3%, retention time, 14.8 min). The oily mixt was chromatographed as described in the previous expt. From the C₆H₆ fractions, there was isolated 0.2 g of 6. Compounds 4a (3.6 g) and 5a (0.8 g) were isolated as fumarates identical with that previously obtained.

(b) A suspension of 2.0 g (0.0116 mole) of 3a and 0.5 g (0.0127 mole) of NaNH₂ in 60 ml of liq NH₃ was stirred for 30 min until dissolution occurred. A soln of 8.2 g (0.057 mole) of MeI in 20 ml of anhyd THF was added dropwise. After 5 hr, external cooling was discontinued, and the liq NH₃ evapd. The THF layer was decanted and the residue washed with H₂O, filtered, and dried to give 2.5 g of a solid. Recrystn from EtOH gave 0.6 g of 5a (HI), mp 274-283° dec; nmr (CDCl₃-KOD) identical with that of 5a (base) previously prepd. Anal. (C₁₁H₁₃N₃O·HI) C, H, N. The mother liquor was concd to give a ppt (mp 230-234°) which was suspended in MeOH and basified with 10% NaOH soln. On evapn of the MeOH and addn of H₂O to the residue, an oily material was pptd. Extn with Et₂O and evapn of Et₂O gave an oil, nmr spectrum (CDCl₃) identical with that of 4a (base) previously prepd; mp of the fumarate also identical with that of 4a fumarate.

10-Methyl-2,3,5,10-tetrahydroimidazo [2,1-b] quinazoline-5thione (4c). To a stirred soln of 1.0 g (0.005 mole) of 4b in 40 ml

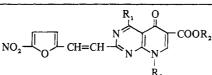
##Gas chromatography was performed on a Hewlett-Packard 5750 instrument with a 8 ft \times 0.125 in. column, 3% OV-17 on 80-100 chromosorb W (HP), He 30 ml/min; initial column temp 150°, programmed 5°/min. Peaks were integrated automatically by an Infotronics CRS-100 instrument. Found retention time (min): 4a, 8.3; 5a, 10.1. of pyridine was added 4.2 g (0.0189 mole) of P_2S_5 and the mixt was refluxed for 5 hr. After evaps the solvent, the residue was triturated with hot H_2O to give 4c (0.8 g after recrystn).

1-Acetyl-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (5b). A soln of 0.9 g (0.0052 mole) of 3a in 25 ml of Ac₂O was heated on a steam bath for 15 min. It was concd, and the cryst ppt was filtered giving 0.93 g of 5b.

1-Acetyl-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-5-one (5c). A soln of 1.5 g (0.008 mole) of 2a in 25 ml of Ac_2O was warmed on a steam bath for 30 min. On cooling, the cryst product was filtered and washed with Et_2O giving 1.65 g of 5c.

References

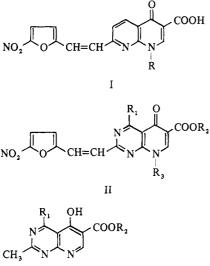
- (1) B. Loev, T. Jen, and R. McLean, *Experientia*, 27, 875 (1971) (paper 1).
- (2) (a) W. Hoefte and W. Kobinger, Arzneim. Forsch., 16, 1038 (1966); (b) H. Schmitt, Mme H. Schmitt, J. R. Boissier, J. F. Gindicelli, and J. Fichelle, Eur. J. Pharmacol., 2, 340 (1968).
- (3) T. Jen, et al; manuscript in preparation.
- (4) (a) R. J. Groat and M. N. Partridge, J. Chem. Soc., 3551 (1960); (b) E. Ziegler, W. Steiger, and Th. Kappe, Monatsh. Chem., 99, 1499 (1968); (c) G. Doleschall and K. Lempert, Acta. Chem. Acad. Sci. Hung., 45, 357 (1965).
- (5) R. H. Clark and E. C. Wagner, J. Org. Chem., 9, 55 (1944).
- (6) R. Adams and H. R. Snyder, J. Amer. Chem. Soc., 60, 1411 (1938); D. G. O'Sullivan and P. W. Sadler, J. Chem. Soc., 2916 (1957).
- (7) A. E. Senear, H. Sargent, J. F. Mead, and J. B. Koepfi, J. Amer. Chem. Soc., 68, 2695 (1946); P. W. Sadler, J. Org. Chem., 21, 169 (1956).
- (8) R. J. North and A. R. Day, J. Heterocycl. Chem., 6, 655 (1969).
- (9) G. Doleschall, L. Lang, and K. Lampert, Acta. Chem. Acad. Sci. Hung., 47, 405 (1966).
- (10) D. Greco, F. Olmsted, M. G. N. Masson, and A. C. Corcoran, J. Lab. Clin. Med., 41, 729 (1953); D. M. Green, F. J. Saunders, N. Wahlgren, and R. L. Craig, Amer. J. Physiol., 170, 94 (1952).
- (11) K. S. Grimson, Arch. Surg., 43, 284 (1941).
- (12) J. Parra and H. Vidrio, Archs. Int. Pharmacodyn. Ther., 181, 353 (1969).
- (13) J. W. Constantine and W. K. McShane, Eur. Pharmacol., 4, 109 (1968).
- (14) J. E. Baer and R. G. Lockwood, J. Amer. Chem. Soc., 76, 1162 (1954).


Synthetic Antibacterials. 4.¹ Nitrofurylvinylpyrido[2,3-d]pyrimidine Derivatives

Sadao Nishigaki,* Kazuko Ogiwara, Shinobu Fukazawa, Misuzu Ichiba, Noriko Mizushima, and Fumio Yoneda Pharmaceutical Institute, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan. Received August 2, 1971

The synthesis of several 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid derivatives and related compounds are discussed. Some members of the series display broad *in vitro* antibacterial activities against Gram-positive and Gram-negative organisms.

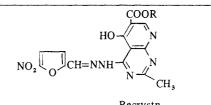
The attachment of a heterocyclic ring to the 2 position of the 5-nitrofuran ring frequently gives antimicrobial agents² and the introduction of a conjugated double bond between these rings often results in enhancing the *in vitro* activities.^{3,4} In view of these facts we have synthesized several nitrofurylvinyl heterocycles^{1,5,6} in an effort to obtain useful antibacterial agents and found that certain nitrofurylvinyl-1,8naphthyridines (I)⁶ possess outstanding activity against *Pseudomonas aeruginosa* as well as a variety of organisms. This paper is concerned with the synthesis and biological evaluation of 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido-[2,3-d]pyrimidine-6-carboxylic acid derivatives (II), which correspond to the analogous system of I mentioned above.


Chemistry. Treatment of ethyl 4-substituted-2-methyl-5hydroxypyrido [2,3-d] pyrimidine-6-carboxylates (III)⁷ with 5-nitrofurfural led to the formation of the respective nitrofurylvinylpyrido [2,3-d] pyrimidines (1-6) when the substituent in the 4 position was H, OH, OR, or PhO. The reaction was generally performed by heating the reactants in AcOH or Ac₂O. The free carboxylic acids of III do not condense with 5-nitrofurfural. Catalysts, such as concd H₂SO₄, which saponify III are therefore unsuited for the condensation reaction. Nitrofurylvinylpyrido [2,3-d] pyrimidines bearing amino substituents in the 4 position were prepared by heating the corresponding 4-alkoxy derivatives with amines such as MeNH₂, pyrrolidine, piperidine, or morpholine in DMF. This amination offers a convenient synthetic method of 4-aminonitrofurylvinylpyrido [2,3-d] pyrimidines (7-10), which could not be obtained by direct condensation from the corresponding 4-amino-5-hydroxy-2-methyl-

No.	R ₁	R ₂	R₃	Yield, %	Mp, °C	Recrystn solvent	Formula	Analysis
1	H	C ₂ H ₅	Н	52.6 ^a	>320	AcOH	C ₁₆ H ₁₂ N ₄ O ₆	C, H, N
2	OCH ₃	C_2H_5	н	73.3 ^a	282-286	AcOH	$C_{17}H_{14}N_4O_7$	С, Н
3	OC₂H,	C_2H_5	Н	74.0 ^a	254-256	AcOH	C ₁₈ H ₁₆ N ₄ O ₇	C, H, N
4	OC, H,	C ₂ H ₅	Н	47.5 ^a	274-278	AcOH	$C_{22}H_{16}N_{4}O_{7}$	C, H, N
5	OH	C_2H_5	Н	76.0 ^a	>320	DMF	$C_{16}H_{12}N_{4}O_{7}$	C, H, N
6	NHNHCHO	C_2H_5	Н	29.4 <i>ª</i>	>320	EtOH	$C_{17}H_{14}N_6O_7$	C, H, N
7	NHCH,	C_2H_5	Н	84.4 ^b	>300	DMF	$C_{17}H_{15}N_{5}O_{6}$	C, H, N
8	Pyrrolidyl	C₂H₅	Н	50.0 ^b	241-242	EtOAc	$C_{20}H_{19}N_5O_6$	С, Н
9	Piperidyl	C₂H₅	Н	54.0 ^b	285	DMF	$C_{21}H_{21}N_5O_6$	C, H, N
10	Morpholinyl	C₂H₅	н	54.5 ^b	278-280	DMF	$C_{20}H_{19}N_5O_7$	C, H, N
11	н	н	Н	88.0^{c}	>320	DMF	C ₁₄ H ₈ N ₄ O ₆	C, H, N
12	OH	Н	H	90.0 ^c	>320	DMSO	$C_{14}H_8N_4O_7$	C, H, N
13	Н	Н	C ₂ H ₅	30.0 ^d	298-302	CHCl,	$C_{16}H_{12}N_4O_6$	C, H, N
14	OH	Н	C_2H_5	42.1^{d}	>340	H,O Î	$C_{16}H_{12}N_4O_7$	C, H, N
15	Н	Н	CH ₃	68.5 ^d	>320	DMF	$C_{15}H_{10}N_4O_6$	C, H
16	H	Н	$CH_2CH_2N(C_2H_5)_2$	59.2 ^d	275	EtOH	$C_{18}H_{21}N_5O_6$	С, Н

^aPrepared by the direct condensation of 2-methylpyrido[2,3-d]pyrimidines with 5-nitrofurfural. ^bPrepared by the amination of 4-ethoxy-2-nitrofurylvinylpyrido[2,3-d]pyrimidine (3) with appropriate amines. ^cPrepared by the hydrolysis of the corresponding 6-carboxylates. ^dPrepared by the alkylation of the corresponding 6-carboxylic acids.

Chart I



III,
$$R_1 = H$$
, OH, OAlk, OPh
IV, $R_1 = NHNH_2$

pyrido [2,3-d] pyrimidine-6-carboxylates and 5-nitrofurfural.

Ethyl 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (1) was subjected to acid hydrolysis by refluxing in AcOH-concd HCl (9:1) to yield the corresponding 6-carboxylic acid (11). Other ethyl nitrofurylvinylpyrido [2,3-d] pyrimidine-6-carboxylates were similarly hydrolyzed, whereby all the 4 substituents were also hydrolyzed to give the same product, 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid (12). The latter compound could not be prepared by the condensation of 4,5-dihydroxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylic acid with 5-nitrofurfural in a mixture of Ac₂O and AcOH or Ac₂O and CF₃COOH. Compounds 11 and 12 were refluxed with Et_2SO_4 and K_2CO_3 in DMF to give the corresponding 8-Et derivatives (13, 14). Compound 11 was converted into the 8-Me derivative (15) with MeI and into the 8-diethylaminoethyl derivative (16)

 Table II. 4-[(5-Nitro-2-furyl)hydrazinomethine]pyrido[2,3-d]pyrimidines

No.	R	Yield, %	Mp,°C	Recrystn solvent	Formula ^a
17	Н	68.4	>320	DMF	C14H10N6O6
18	C ₂ H ₅	30.0	255 dec	Me ₂ CO	$C_{16}H_{14}N_6O_6$
				· ····	

"Anal. C, H, N

Table III. 2-Styrylpyrido[2,3-d]pyrimidines

		R	OC N∽ CH=CH∽N→	COOC	2H5
No.	R	Yield, %	Mp, °C	Recrystn solvent	Formula ^a
19 20	Cl NO ₂	34.9 50.8	255 265	DMF DMF	C ₂₀ H ₁₈ ClN ₃ O ₄ C ₂₀ H ₁₈ N ₄ O ₆

^aAnal. C, H, N.

with diethylaminoethyl chloride in the presence of K_2CO_3 in EtOH (see Table I).

When 4-hydrazino-5-hydroxypyrido [2,3-d] pyrimidine-6carboxylic acid derivatives (IV)⁷ were treated with 5-nitrofurfural in Ac₂O-AcOH, the 4-[(5-nitro-2-furyl)hydrazinomethine]pyrido [2,3-d] pyrimidine derivatives (17, 18) were formed (Table II). For comparison of their activities with those of the respective nitrofurylvinyl compounds, *p*-chloroand *p*-nitrostyryl derivatives (19, 20) were prepared by the condensation of ethyl 4-ethoxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylate⁷ with *p*-chloro- and *p*-nitrobenzaldehyde (Table III).

								`	ō							
		Klebsi-														
		ella									Micro-					
	Escher-	-nəud			Sal-	Staphyl-		S.	Bacillus	B. sub-	coccus	Staph.	Staph.			
	ichia coli	moniae			monella	ococcus	S. flex-	sonnei	mega-	tilis	flavus	aureus	aureus	Staph.	Myco-	
	Kaufmann	ATCC	P. vul-	Ps. aeru-	typhi	enter-	neri	II	therium	ATCC	ATCC	FDA	(Shim-	aureus	bacter-	
No.	0-1	10031	garis	ginosa	H 901 w	itidis	2a 1675	37148	10778	6633	10240	209 P	anishi)	(Onuma)	ium 607	M. phlei
	0.19	1.56	>25	>25	1.56	0.78	0.39	0.39	0.39	0.19	1.56	0.39	0.19	0.19	>25	>25
7	3.13	6.25	>6.25	>6.25	6.25	3.13	1.56	1.56		0.78	1.56	0.19	0.04	0.04	6.25	6.25
e	>100	100	>100	>100	100		100	100		0.39	1.56	0.78	0.39	0.39	100	100
4	>25	>25	>25	>25	25	25	25	25		0.78	25	0.78	0.19	0.39	25	25
S	>50	>50	>50	>50	>50	>50	50	50	25	>50	>50	>50	>50	>50	>50	50
9	>25	>25	>25	>25	>25	25	25	>25	>25	> 25	25	12.5	25	25	>25	>25
7	6.25	6.25	>6.25	6.25	6.25	6.25	6.25	6.25	0.09	0.09	0.39	0.19	0.04	0.04	3.13	3.13
æ	>100	12.5	>100	>100	100		100	100		1.56	3.13	0.78	0.39	0.39	12.5	12.5
6	25	25	>25	>25	25	12.5	25	25	0.39	0.39	0.13	0.39	0.09	0.09	12.5	12.5
10	25	12.5	>25	>25	25	6.25	25	25	3.13	3.13	3.13	3.13	3.13	3.13	>25	>25
11	25	6.25	>25	>25	25	3.13	6.25	25	3.13	3.13	3.13	3.13	3.13	3.13	>25	>25
12	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
13	3.13	1.56	12.5	12.5	6.25	3.13	3.13	3.13	0.09	0.09	0.39	0.39	0.09	0.09	12.5	12.5
14	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	>3.13	3.13	3.13
15	6.25	25	25	25	6.25	3.13	3.13	6.25	1.56	0.78	1.56	1.56	1.56	0.78	12.5	6.25
16	12.5	25	25	25	12.5	3.13	6.25	12.5	3.13	1.56	3.13	3.13	1.56	1.56	12.5	6.25
17	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25
18	>25	25	>25	>25	25	12.5	25	25	12.5	6.25	25	3.13	6.25	3.13	25	25
19	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
20	>25	>25	>25	>25	>25	>25	>25	>25	6.25	6.25	6.25	12.5	3.13	3.13	50	50
q	6.25	6.25	>50	>50	12.5	6.25	3.13	12.5	3.13	3.13	>50	12.5	12.5	12.5	>50	>50
c	6.25	12.5	>50	>50	12.5	6.25	3.13	6.25	6.25	6.25	>25	12.5	12.5	12.5	>50	>50
Wp	inimum inhib	itory concen	^a Minimum inhibitory concentration is the lowest concentration of the compoun	lowest concer	itration of th	ie compound	I that preven	ts visible gro	that prevents visible growth after 48 hr of incubation at 37°	hr of incuba	1.	b Nitrofurazone	1 .	^c Nitrofurantoin.		

Min inhib concn, $\mu g/ml^a$

Table IV. In Vitro Antibacterial Activity

Journal of Medicinal Chemistry, 1972, Vol. 15, No. 7 733

Screening Results. The compounds were screened in vitro against a wide variety of bacteria (Table IV). Most of these compounds possess activity against both Gramnegative and Gram-positive organisms. Especially 1, 2, 7, 13, 15, and 16 possess high antibacterial activity; the activity of 7, 13, 15, and 16 against *Pseudomonas aeruginosa* and *Proteus vulgaris* is noteworthy. It is interesting to note that the parent 5-hydroxy-2-[2-(5-nitrofuryl)vinyl]pyrido-[2,3-d]pyrimidine-6-carboxylic acid (11) is less potent than the corresponding ester (1) or the 8-alkyl derivatives (13, 15, 16). The substitution of the nitrofurylvinyl group with the styryl group decreases the activity.

Experimental Section

Ethyl 5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylates (1-6). An ethyl 5-hydroxy-2-methylpyrido[2,3-d]pyrimidine-6-carboxylate and an equimolar amount of 5-nitrofurfural were refluxed in Ac₂O-AcOH (1:1) for several hours. The reaction mixt solubilized and then the product was pptd. After cooling, the separated crystals were collected by filtration, washed with AcOH and then Et_2O , and recrystd from AcOH or DMF to give a yellow powder.

Ethyl 5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-4-sec-aminopyrido-[2,3-d] pyrimidine-6-carboxylates (7-10). A mixt of ethyl 4ethoxy-S-hydroxy-2-methylpyrido [2,3-d] pyrimidine-6-carboxylate and an equimolar amount of secondary amine (MeNH₂, pyrrolidine, piperidine, or morpholine) was heated in DMF at 120-130° for 10-90 min. After cooling, the product was removed by filtration and recrystd from a suitable solvent to give a yellow powder.

5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic Acid (11). Ethyl 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (1) (0.45 g, 0.0013 mole) was refluxed for 2 hr in a mixt of AcOH (9 ml) and concd HCl (1 ml). The ppt was collected from the cooled solution, washed with H_2O , and recrystd from DMF to give yellow needles (0.37 g, 88%, mp > 320°).

4,5-Dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic Acid (12). A. A mixt of ethyl 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (5) (0.40 g, 0.0011 mole), AcOH (27 ml), and concd HCl (3 ml) was refluxed for 1 hr. After cooling, the ppt was collected by filtration, washed with H₂O, and recrystd from DMSO to give a yellow powder (0.35 g, 90%, mp >320°).

B. A mixt of ethyl 4-methoxy-5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (2) (0.45 g, 0.0012 mole), AcOH (9 ml), and concd HCl (1 ml) was refluxed for 1 hr. The precipitated crystals were removed from the cooled solution and recrystd from DMSO to give a yellow powder (0.35 g, 85.4%).

C. To a mixt of AcOH (10 ml) and concd HCl (3.3 ml) was added ethyl 4-methylamino-5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-pyrido [2,3-d] pyrimidine-6-carboxylate (7) (1 g, 0.0026 mole) and the mixt was refluxed for 90 min. The precipitate was collected by filtration and recrystallized from DMF to give a yellow powder (0.53 g, 61.8%).

5,8-Dihydro-8-ethyl-2-[2-(5-nitro-2-furyl)vinyl]-5-oxopyrido-[2,3-d]pyrimidine-6-carboxylic Acid (13). A mixt of 5-hydroxy-25,8-Dihydro-8-ethyl-4-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-5oxopyrido[2,3-d]pyrimidine-6-carboxylic Acid (14). A mixt of 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid (12) (0.53 g, 0.0015 mole), Et₂SO₄ (0.26 g, 0.0014 mole) and K₂CO₃ (0.5 g) was heated in DMF (10 ml) at 100° for 2 hr. After cooling, the product was removed by filtration and recrystd from H₂O to give yellow powder (0.24 g, 42.1%, mp >320°).

2-Methyl-5-hydroxy-4-[(5-nitro-2-furyl)hydrazinomethine]pyrido [2,3-d]pyrimidine-6-carboxylic Acid (17). To a mixt of 4hydrazino-5-hydroxy-2-methylpyrido [2,3-d] pyrimidine-6-carboxylic acid (0.45 g, 0.0016 mole), Ac₂O (9 ml), and AcOH (9 ml) was added 5-nitrofurfural (0.25 g, 0.018 mole) and the mixt was refluxed at 140° for 2.5 hr. After cooling the product was collected by filtration, washed with AcOH, and recrystd from EtOH to give a yellow powder (0.2 g, 29.4%, mp >320°).

Ethyl 2-Methyl-5-hydroxy-4-[(5-nitro-2-furyl)hydrazinomethine]pyrido [2,3-d] pyrimidine-6-carboxylate (18). To a mixt of ethyl 4hydrazino-5-hydroxy-2-methylpyrido [2,3-d] pyrimidine-6-carboxylate (0.5 g, 0.0019 mole), Ac₂O (10 ml), and AcOH (10 ml) was added 5-nitrofurfural (0.25 g, 0.0018 mole) and the mixt was refluxed at 130° for 2 hr. The reaction mixt was diluted with H₂O, and the precipitate was collected by filtration and recrystd from Me₂CO to give a yellow powder (0.22 g, 30%, mp 255° dec).

Ethyl 4-Ethoxy-5-hydroxy-2-(p-nitrostyryl)pyrido[2,3-d]pyrimidine-6-carboxylate (20). A mixt of ethyl 4-ethoxy-5-hydroxy-2methylpyrido[2,3-d]pyrimidine-6-carboxylate (0.8 g, 0.0029 mole), p-nitrobenzaldehyde (0.88 g, 0.0058 mole), Ac₂O (5 ml), and AcOH (5 ml) was refluxed for 3 hr. Yellow crystals were removed from the reaction mixt, washed with AcOH, and recrystd from DMF to give pale yellow crystals (0.6 g, 50.8%, mp 265°).

Acknowledgment. The authors express their thanks to Professor H. Saikachi of Kyushu University for his encouragement throughout this study.

References

- S. Nishigaki, N. Mizushima, and F. Yoneda, J. Med. Chem., 14, 638 (1971) (paper 3).
- (2) K. Miura and H. K. Reckendorf, Progr. Med. Chem., 5, 320 (1967).
- (3) T. Takahashi, H. Saikachi, S. Yoshina, and C. Mizuno, Yakugaku Zasshi, 69, 284 (1949); Chem. Abstr., 44, 5372 (1950).
- (4) T. Sasaki, Chem. Pharm. Bull., 2, 104 (1954).
- (5) S. Nishigaki, F. Yoneda, H. Matsumoto, and K. Morinaga, J. Med. Chem., 12, 39 (1969).
- (6) S. Nishigaki, F. Yoneda, K. Ogiwara, T. Naito, R. Dohmori, S. Kadoya, Y. Tanaka, and I. Takamura, *Chem. Pharm. Bull.*, 17, 1827 (1969).
- (7) S. Nishigaki, K. Ogiwara, K. Senga, S. Fukazawa, K. Aida, Y. Machida, and F. Yoneda, *ibid.*, 18, 1387 (1970).