LETTERS 2001 Vol. 3, No. 12 1949–1952

ORGANIC

Studies on the Synthesis of Pectenotoxin II: Synthesis of a C(11)–C(26) Fragment Precursor via [3 + 2]-Annulation Reactions of Chiral AllyIsilanes

Glenn C. Micalizio¹ and William R. Roush*

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

roush@umich.edu

Received April 24, 2001

ABSTRACT

A synthesis of tetracycle 2 corresponding to the C(11)–C(26) fragment of pectenotoxin II is described. The synthesis features two highly stereoselective [3 + 2]-annulation reactions of chiral allylsilanes, generated via allylboration of aldehydes with the chiral γ -silylallylborane 4 or the γ -silylallylboronate 19, for construction of the highly substituted C and E rings.

The pectenotoxins are a family of highly cytotoxic polyether macrolide toxins that are active against human lung (A-549), colon (HT-29), and breast (MCF-7) cancer cell lines.^{2,3} Pectenotoxin II (1, Scheme 1), produced by the dinoflagellates *Dinophysis fortii* and *D. accuminata*, has also shown selective cytotoxicity against several cell lines representing ovarian, renal, lung, colon, CNS, melanoma, and breast cancer, with differences in LC₅₀ values between sensitive and resistant cell lines of 100-fold or more.³ Pectenotoxin II interacts with the actin cytoskeleton at a unique site and could become an important research tool in the study of basic cellular processes.⁴

Although the pectenotoxins display an array of interesting and potentially significant biological properties, only one study on their synthesis has been reported to date.⁵ Pectenotoxin II represents a formidable synthetic challenge, as the structure contains two spiroketals, three tertiary ethers, three substituted tetrahydrofurans, and 19 stereocenters embedded within a 40-carbon chain. The exquisitely complex

⁽¹⁾ Holder of the 1999–2000 ACS Division of Organic Chemistry Graduate Fellowship sponsored by Eli Lilly.

⁽²⁾ Yasumoto, T.; Murata, M.; Oshima, Y.; Sano, M.; Matsumoto, G. K.; Clardy, J. *Tetrahedron* **1985**, *41*, 1019.

⁽³⁾ Jung, J. H.; Sim, C. J.; Lee, C.-O. J. Nat. Prod. 1995, 58, 1722.
(4) Spector, I.; Braet, F.; Shochet, N. R.; Bubb, M. R. Microscop. Res. Technol. 1999, 47, 18.

structure of **1** coupled with its interesting biological properties have prompted us to initiate studies targeting the total synthesis of this molecule. We report herein a brief and highly stereocontrolled synthesis of tetracycle **2**, corresponding to the C(11)–C(26) C–D–E fragment of the natural product, by a route that features our convergent threecomponent coupling sequence for tetrahydrofuran synthesis via chiral allylsilane intermediates.⁶

We recently reported that allylsilanes of general structure **6**, which are readily prepared by allylboration of aldehydes with either chiral allylborane **4**⁷ or our first-generation tartrate ester modified γ -silylallylboronates,⁸ undergo highly stereoselective [3 + 2] annulation reactions with aldehydes to give 2,3,5-trisubstituted tetrahydrofurans.^{6,9} When the reaction is performed by using BF₃·Et₂O as the (nonchelating) Lewis acid, 2,5-*cis*-tetrahydrofurans **7** are prepared with at least 12:1 and most often with $\geq 20:1$ selectivity. On the other hand, reactions that are performed under chelate control using SnCl₄ as the promoter provide 2,5-*trans*-substituted tetrahydrofurans (e.g., **9**) with $\geq 20:1$ selectivity. The chelate-controlled conditions also permit the synthesis of tetrahydrofurans with quaternary centers, as illustrated by the synthesis of **10** in Scheme 2.⁶

It was readily apparent that the [3 + 2]-annulation sequence is ideally suited for the synthesis of the E ring of pectenotoxin II via the stepwise three-component coupling of aldehyde **3**, allylborane **4**, and methyl pyruvate (**5**). However, we have not yet learned how to effect a nonchelate controlled [3 + 2]-annulation reaction of allylsilanes **6** and ketones, which would be required for the direct introduction of the 2,5-cis stereochemistry of the C ring of pectenotoxin II. However, recognizing that C(15) of the natural product

1950

is adjacent to the C(14)-ketone, it seemed conceivable that the natural configuration at this center could be established at an appropriate point in the synthetic sequence by a basepromoted epimerization reaction. This permitted us to contemplate the synthesis of the C ring unit of **2**, with unnatural C(15) stereochemistry, via a second [3 + 2]annulation reaction involving **4**, **5**, and the aldehyde generated from deprotection and oxidation of the C(16)-OTBS group of **3**. While we have not yet demonstrated that a C(15) epimerization sequence can be accomplished, we have developed and report herein a remarkably brief synthesis of tetracycle **2** that serves to define the utility of the [3 + 2]annulation sequence for tetrahydrofuran synthesis in a structurally complex context.

Our synthesis of aldehyde **3** begins with the known geraniol epoxide **11** (\geq 92% ee) (Scheme 3).¹⁰ Reduction of the epoxy-alcohol (Red-Al, THF)¹¹ followed by treatment of the 1,3-diol with benzaldehyde (PPTS, PhH, reflux) provided the corresponding benzylidene acetal, which after reductive opening with DIBAL-H (CH₂Cl₂, -78 to 23 °C)¹² and protection of the primary hydroxyl group (TBSCl, Et₃N, DMAP, CH₂Cl₂) afforded the *tert*-butyldimethylsilyl ether **12** in an overall yield of 71% from **11**. The olefin was then oxidatively cleaved by a two-step sequence ((i) OsO₄, NMO, acetone, pH 7 buffer (92%); (ii) Pb(OAc)₄, EtOAc) to give the C(21) aldehyde **3** which was used in subsequent chemistry without purification.

Chiral allylsilane **13**, required for construction of the E ring, was synthesized by the double asymmetric silylallylboration of aldehyde **3** with the γ -silylallylborane **4** (Scheme 4).⁷ This reaction provided the desired *anti*- β -hydroxyallylsilane as an inseparable 9–14:1 mixture of diastereomers (77% yield), which was subsequently protected as the corresponding triethylsilyl ether **13** (TESCl, Et₃N, DMAP, CH₂Cl₂, 93%). The yield of allylsilane **13** was 66% for the four-step sequence from olefin **12**. The SnCl₄-promoted [3 + 2] annulation of **13** and methyl pyruvate (**5**) then afforded the tetrasubstituted tetrahydrofuran **15** in 66–75% yield (>20:1 ds) accompanied by a small amount of the allylation

⁽⁵⁾ Amano, S.; Fujiwara, K.; Murai, A. Synlett 1997, 1300.

⁽⁶⁾ Micalizio, G. C.; Roush, W. R. Org. Lett. 2000, 2, 461.

⁽⁷⁾ Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C. *Tetrahedron Lett.* **2000**, *41*, 9413.

⁽⁸⁾ Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981.

⁽⁹⁾ For a review of [3 + 2]-annulation reactions of allylsilanes: Masse, C. E.; Panek, J. S. *Chem. Rev.* **1995**, *95*, 1293.

⁽¹⁰⁾ Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1.

⁽¹¹⁾ Gao, Y.; Sharpless, K. B. J. Org. Chem. 1988, 53, 4081.

⁽¹²⁾ Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593.

product **16** (11%). The stereochemistry within the tetrahydrofuran ring of **15** was assigned by ¹H NOE studies and is consistent with the first step of the [3 + 2]-annulation reaction proceeding by way of the *syn*-synclinal transition state **14**.¹³ The stereochemistry of the tertiary alcohol center in **16** is assumed to be the same as that of the quaternary center in **15**, but this has not been assigned rigorously.

Reduction of the methyl ester unit of 15 (DIBAL-H, THF 0 °C) followed by benzylation of the primary alcohol (NaH, BnBr, tetrabutylammonium iodide (TBAI), THF, reflux) afforded 17 in 83% yield (Scheme 5). Global desilylation of 17 by using a modified Hudrlik protiodesilylation protocol^{14,15} (5% KO-t-Bu, DMSO, H₂O, TBAF, 18-crown-6, 85 °C) afforded the C(16),C(21)-diol in 95% yield. The diol was then oxidized via the standard Swern protocol¹⁶ to give the keto aldehyde 18, which was used in the subsequent step without purification. Surprisingly, in initial attempts to γ -silvallylate **18** using the allylborane **4**, the aldehyde underwent reduction and allylation products were not obtained. Consequently 18 was treated with our firstgeneration tartrate ester modified γ -silvlallylboronate (R,R)-**19** (toluene, -78 °C, 4 Å molecular sieves).⁸ This reaction provided the allylsilane 20 in 80% yield from 17 with excellent stereo- and regioselectivity; products from allylation of the ketone carbonyl were not observed. Protection of the hydroxyl group of 20 as a TES ether (TES-Cl, DMF, imidazole, 70 °C, 88% yield) then set the stage for introduction of the C ring by a second [3 + 2]-annulation reaction with methyl pyruvate. In the event, treatment of the allylsilane with 3 equiv of the 1:1 complex of methyl pyruvate and SnCl₄ in CH₂Cl₂ at -78 °C provided a 1:1 mixture of

(16) Tidwell, T. T. Org. React. 1990, 39, 297.

bis-tetrahydrofuran **21** and an allylated product tentatively assigned the stereochemistry of **22**. The yield of **21** from **20** is thus 30%.

The synthesis of the C–D–E tetracyclic synthon **2** was completed by deprotection of the TES ether (PPTS, MeOH, 77% yield) and then hydrogenolysis of the two benzyl ethers over Pd(OH)₂ on carbon in MeOH. Under these conditions, the keto diol spontaneously cyclized to give the targeted tetracycle **2** in 63% overall yield from **21**. The stereochemistry of **2** was confirmed by the ¹H NOE data summarized in Scheme 6. Noteworthy are the NOE interactions observed

⁽¹³⁾ Keck, G. E.; Savin, K. A.; Cressman, E. N. K.; Abbott, D. E. J. Org. Chem. **1994**, 59, 7889.

⁽¹⁴⁾ Hudrlik, P. F.; Hudrlik, A. M.; Kulkarni, A. K. J. Am. Chem. Soc. **1982**, 104, 6809.

⁽¹⁵⁾ Hudrlik, P. F.; Holmes, P. E.; Hudrlik, A. M. *Tetrahedron Lett.* **1988**, 29, 6395.

between the C(11)-methoxycarbonyl group and the dimethylphenylsilyl group, as well as that between the dimethylphenylsilyl unit and H(15) which collectively serve to define the stereochemistry within the C ring. Similarly, ¹H NOE's observed between H(22) and the C(26)-CH₂OH group confirm the stereochemistry within the trisubstituted E ring. Finally, a long-range ¹H NOE was observed between the C(12)-Me and H(22) which is completely consistent with the assigned structure.

In summary, we have developed an expeditious strategy for the synthesis of tetracycle **2**, a synthetic equivalent of the C(11)–C(26) fragment of pectenotoxin II, by a route that employs our recently developed three-component coupling strategy for tetrahydrofuran synthesis. The synthesis of **2** proceeds in 18 steps from geraniol epoxide (**11**) in 4.4% overall yield. Studies currently in progress are focusing on suppressing the allylation pathway that compromised the efficiency of the [3 + 2]-annulation sequence leading to **21** and to defining a strategy for direct introduction of the C ring with correct stereochemistry at C(15). These studies, together with additional progress toward the total synthesis of pectenotoxin II, will be reported in due course.

Acknowledgment. Support provided by the National Institutes of Health (GM 38436) is gratefully acknowledged. We also thank Eli Lilly for a graduate fellowship to G.C.M.

Supporting Information Available: Experimental procedures for synthesis of **13–21** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0160250