

Synthesis of 3,3-Spiroindolines via FeCl₃-Mediated Cyclization of Aryl- or Alkene-Containing 3-Substituted N–Ac Indoles

Raj Kumar Nandi, Régis Guillot, Cyrille Kouklovsky, and Guillaume Vincent*

Univ Paris Sud, CNRS, Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe Méthodologie, Synthèse et Molécules Thérapeutique (MS&MT), Bat. 410, 91405 Orsay, France

Supporting Information

ABSTRACT: We report the cyclization of 3-substituted *N*-acetylindoles for the straightforward synthesis of 3,3-spiroindolines via the Friedel–Crafts reaction of an appended aryl group or the formal [2 + 2] cycloaddition of an appended alkene. Our strategy involves an Umpolung of the C2=C3 bond of the indole nucleus during FeCl₃-mediated hydroarylation or annulation reactions.

T he 3,3-spiroindoline motif is found in several biologically active natural products¹ such as spiroindimicin B or vindoline, and it is a privileged scaffold for the design of medicinally relevant compounds (Figure 1).² For example, NITD609 is an antimalaria agent,^{2a} XEN907 is a promising compound for the treatment of pain,^{2b} and SYN351 is an insecticidal^{2c} (Figure 1).

Figure 1. 3,3-Spiroindolines of interest.

Various methods to access 3,3-spiroindolines have been reported³ including dearomative cyclization of indoles.^{4–8} However, the access to 3-aryl-containing spiroindolines is less encountered.^{9,2b} In particular spirocyclization by 3-arylative dearomatization of indole is uncommon (Scheme 1).¹⁰ Harrowven reported one example of a radical spirocylization of a 2-iodoaryl-containing 3-substitued indole 1 mediated by tin hydride to give spiroindoline **2**.¹¹

The group of You¹² and the group of Xu and Liang¹³ reported a palladium catalyzed cyclization process from bromo or iodoarenes 3-5 involving the intramolecular nucleophilic attack of the C3 position of indole into an aryl palladium complex **6**, which led to 3,3-spiroindolenines 7.

Scheme 1. Strategies for the Spiroarylation of Indoles

Given our interest in arylative functionalization of indoles,¹⁴ we propose a mechanistically distinct approach to the synthesis of arylated 3,3-spiroindolines.

Received: January 19, 2016

Organic Letters

To access the spiroindoline framework 9 from substrates 8 (Scheme 1), we intend to deploy the FeCl₃-mediated hydroarylation reaction of the C3=C2 bond of N-Ac indoles that we developed and reported recently in the intermolecular mode.^{14a,b,15} We believe that this reaction proceeds via both the activation of the acetyl and the C2=C3 bond of indole in intermediates **10a** or **10b**, which would be electrophilic to trigger a Friedel–Crafts type reaction and would indeed result in the transformation of a C-H bond into a C-C bond.¹⁶

The hydroarylation cyclization proved to best proceed with 2.4 equiv of anhydrous $FeCl_3$ in dichloromethane in dilute conditions (0.05 M) at room temperature in air. The generality of the reaction was evaluated, and we found that *para*- and *meta*-methoxyphenyl as well as *para*-tolyl or phenyl substituents on the C3-chain of the indole led efficiently to the desired spiroindolines **9a-d** (Scheme 2).

Scheme 2. Spirocyclization via Hydroarylation of N–Ac Indoles: Substitution of the Aryl Group

We then studied the substitution of the benzene part of the indole (Scheme 3). We noticed that electrondonating

methoxy and methyl groups were well tolerated at the C5-position and led to the respective formation of spiroindolines 9e-hand 9i-l. Halogens were also tolerated since the 5-bromo-3,3spiroindolines 9m-p and the 6-chloro-3,3-spiroindolines 9q-twere obtained. We then found that it is also possible to use a heterocyclic substituent such as a thienyl to obtain heteroarylspiroindolines **9u**,**v** in moderate yields (Scheme 4).

Scheme 4. Spirocyclization via Hydroarylation of N-Ac Indoles: Use of a Heteroaryl and Substitution of the Tether

Finally, we also introduced a *gem*-diester on the tether between the indole and the phenyl parts (Scheme 4). We observed that the conversion was incomplete at room temperature probably due to sequestration of iron chloride by the ester groups. However, performing the reaction at 80 °C in 1,2-dichloroethane resulted in complete conversion of the starting indole and isolation of the spiroindoline **9w** in 62% yield. Unfortunately, no conversion of **8x**, the precursor of the 7-membered ring **9x**, was observed.¹⁷

X-ray crystallography of crystals of spiroindolines 9a, 9d, and 9u allowed us to unambiguously assign their structures (Figure 2).¹⁸

Figure 2. X-ray structures of spiroindolines 9a, 9d, and 9u.

We next wished to evaluate other π nucleophiles to access the spiroindoline framework. Therefore, we replaced the aryl group on the C3-side chain by a terminal alkene. We believed that activation of the C2=C3 bond of indole 11 by FeCl₃ would trigger the addition of the alkene at C3 via intermediate 12 to form a 3,3-spirocyclic compound 13 bearing an *endo*-cyclic double bond (Scheme 5).^{9a}

Scheme 5. Planned 3-Spirocyclization of an N-Ac Indole by Intramolecular Addition of a Terminal Alkene

Scheme 6. Spirocyclization via a Formal [2+2] Cycloaddition

However, when we performed the reaction of 11 with FeCl₃, we obtained a different 3,3-spirocyclic indoline 14 (Scheme 6). The terminal alkene and the C2=C3 bond of indole have been involved in a dearomative [2 + 2] annulation, which led to the formation of a cyclobuta[*b*]indoline framework fused with a cyclopentane, as determined by X-ray analysis.¹⁸ Few dearomative [2 + 2] cycloaddition between indoles and alkenes are known, which are photoinduced, in contrast with our reaction.^{7d,e,19-21} We can postulate that upon activation of the C2=C3 bond of the indole, the alkene adds onto the electrophilic C3 position of the indole by its more substituted carbon. It is also possible that FeCl₃ only activates the carbonyl group to promote a [2 + 2] cycloaddition.²²

This result proves that the activation of *N*-acyl indole by $FeCl_3$ is not limited to induce C3-regioselective hydroarylation. Other dearomative reactions of indole could be promoted by this mode of activation such as a formal [2 + 2] cycloaddition.

In conclusion, we report a straightforward access to spiroindoline derivatives via the intramolecular hydroarylation of N–Ac indoles mediated by FeCl₃. This Friedel–Crafts reaction of the appended aryl leads to the concomitant C3-regioselective formation of a quaternary carbon center and dearomatization of the indole nucleus. This reaction is operationally simple and proceeds at room temperature in air with a cheap and nontoxic promoter. Moreover, in the presence of a terminal alkene on the C3-side chain of the indole, iron trichloride mediates a rare nonphotoinduced dearomative [2 + 2] annulation, which led to a constrained cyclopenta[2,3]cyclobuta[1,2-b]indoline holding also a spirocyclic structure.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00174.

Additional experiment, experimental procedures, characterizations, and ¹H and ¹³C NMR spectra copies of all new compounds (PDF)

```
Compound 9a(CIF)
Compound 9d(CIF)
Compound 9u(CIF)
```

Compound 14(CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: guillaume.vincent@u-psud.fr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/under REA grant agreement no. 623422 (IIF-2013 postdoctoral fellowship to R.K.N.). We also gratefully acknowledge the ANR (ANR-12-JS07-0002), the Université Paris Sud, and the CNRS for financial support.

REFERENCES

(1) Spiroindimicins: (a) Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. *Org. Lett.* **2012**, *14*, 3364–3367. Vindoline: (b) Gorman, M.; Neuss, N.; Biemann, K. *J. Am. Chem. Soc.* **1962**, *84*, 1058–1059.

(2) (a) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; González-Páez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. *Science* 2010, 329, 1175–1180.
(b) Chowdhury, S.; Chafeev, M.; Liu, S.; Sun, J.; Raina, V.; Chui, R.; Young, W.; Kwan, R.; Fu, J.; Cadieux, J. A. *Bioorg. Med. Chem. Lett.* 2011, 21 (12), 3676–3681. (c) Sluder, A.; Shah, S.; Cassayre, J.; Clover, R.; Maienfisch, P.; Molleyres, L.-P.; Hirst, E. A.; Flemming, A. J.; Shi, M.; Cutler, P.; Stanger, C.; Roberts, R. S.; Hughes, D. J.; Flury, T.; Robinson, M. P.; Hillesheim, E.; Pitterna, T.; Cederbaum, F.; Worthington, P. A.; Crossthwaite, A. J.; Windass, J. D.; Currie, R. A.; Earley, F. G. P. *PLoS One* 2012, 7, e34712.

(3) For reviews: (a) James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. *Chem. - Eur. J.* **2016**, *22*, 2856–2881. (b) Singh, G. S.; Desta, Z. Y. *Chem. Rev.* **2012**, *112*, 6104–6155. (c) Trost, B.; Brennan, M. *Synthesis* **2009**, 2009, 3003–3025. (d) Galliford, C. V.; Scheidt, K. A. *Angew. Chem., Int. Ed.* **2007**, *46*, 8748–8758.

(4) For a general review on dearomatization of indoles, see: Roche, S. P.; Youte Tendoung, J.-J.; Tréguier, B. *Tetrahedron* **2015**, *71*, 3549–3591.

(5) Selected examples of dearomative 3-cyclization of indoles using their C3 nucleophilicity: (a) He, F.; Bo, Y.; Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. **1999**, *121*, 6771–6772. (b) Medley, J. W.; Movassaghi, M. Angew. Chem. **2012**, *124*, 4650–4654. (c) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature **2011**, 475, 183–188.

(6) Selected examples of metal-catalyzed dearomative 3-cyclizations of indoles: (a) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794-13795. (b) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem. Soc. 2010, 132, 11418-11419. (c) Cai, Q.; Zheng, C.; Zhang, J.-W.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 8665-8669. (d) Wu, Q.-F.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 1680-1683. (e) Zhang, X.; Liu, W.-B.; Wu, Q.-F.; You, S.-L. Org. Lett. 2013, 15, 3746-3749. (f) Gao, R.-D.; Liu, C.; Dai, L.-X.; Zhang, W.; You, S.-L. Org. Lett. 2014, 16, 3919-3921. (g) Montgomery, T. D.; Nibbs, A. E.; Zhu, Y.; Rawal, V. H. Org. Lett. 2014, 16, 3480-3483. (h) Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350-1353. (i) James, M. J.; Cuthbertson, J. D.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Angew. Chem., Int. Ed. 2015, 54, 7640-7643. (j) James, M. J.; Clubley, R. E.; Palate, K. Y.; Procter, T. J.; Wyton, A. C.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Org. Lett. 2015, 17, 4372-4375. (k) Xu, W.; Wang, W.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 9546-9549. (1) Zheng, N.; Chang, Y.-Y.; Zhang, L.-J.; Gong, J.-X.; Yang, Z. Chem. - Asian J. 2016, 11, 371-375.

(7) Selected examples of a dearomative 3-cyclization of indoles by cycloaddition, [3 + 2]: (a) Mejía-Oneto, J. M.; Padwa, A. Org. Lett. 2006, 8, 3275–3278. (b) Campbell, E. L.; Zuhl, A. M.; Liu, C. M.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 3009–3012. (c) Zheng, Y.; Cleaveland, J.; Richardson, D.; Yuan, Y. Org. Lett. 2015, 17, 4240–4243. [2 + 2]: (d) Winkler, J. D.; Scott, R. D.; Williard, P. G. J. Am. Chem. Soc. 1990, 112, 8971–8975. (e) White, J. D.; Ihle, D. C. Org. Lett. 2006, 8, 1081–1084. (8) Selected examples of dearomative 3-cyclizations of indoles by oxidative coupling: (a) Zuo, Z.; Ma, D. Angew. Chem., Int. Ed. 2011, 50, 12008–12011. (b) Fan, F.; Xie, W.; Ma, D. Org. Lett. 2012, 14,

Organic Letters

1405–1407. (c) Fan, F.; Xie, W.; Ma, D. Chem. Commun. 2012, 48, 7571–7573. (d) Wei, Y.; Zhao, D.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 12988–12991. (e) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem. Res. 2015, 48, 702–711. (f) Kaïm, L. E.; Grimaud, L.; Goff, X.-F. L.; Menes-Arzate, M.; Miranda, L. D. Chem. Commun. 2011, 47, 8145–8147. (g) Watanabe, T.; Umezawa, N.; Kato, N.; Higuchi, T. Chem. - Eur. J. 2013, 19, 4255–4261.

(9) Selected examples: (a) England, D. B.; Merey, G.; Padwa, A. Org. Lett. 2007, 9, 3805–3807. (b) Gorokhovik, I.; Neuville, L.; Zhu, J. Org. Lett. 2011, 13, 5536–5539. (c) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561–11565. (d) Richmond, E.; Duguet, N.; Slawin, A. M. Z.; Lébl, T.; Smith, A. D. Org. Lett. 2012, 14, 2762–2765. (e) Katayev, D.; Jia, Y.-X.; Sharma, A. K.; Banerjee, D.; Besnard, C.; Sunoj, R. B.; Kündig, E. P. Chem. - Eur. J. 2013, 19, 11916–11927.

(10) For a review on 3-arylative dearomatization of indoles: Denizot, N.; Tomakinian, T.; Beaud, R.; Kouklovsky, C.; Vincent, G. *Tetrahedron Lett.* **2015**, *56*, 4413–4429.

(11) Flanagan, S. R.; Harrowven, D. C.; Bradley, M. Tetrahedron Lett. 2003, 44, 1795–1798.

(12) Wu, K.-J.; Dai, L.-X.; You, S.-L. Org. Lett. **2012**, *14*, 3772–3775. (13) Wu, X.-X.; Shen, Y.; Chen, W.-L.; Chen, S.; Xu, P.-F.; Liang, Y.-M. Chem. Commun. **2015**, *51*, 16798–16801.

(14) (a) Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2012, 51, 12546–12550. (b) Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Chem. - Eur. J. 2014, 20, 7492–7500.
(c) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881–11885. (d) Denizot, N.; Pouilhès, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2014, 16, 5752–5755. (e) Beaud, R.; Tomakinian, T.; Denizot, N.; Pouilhès, A.; Kouklovsky, C.; Vincent, G. Synlett 2015, 26, 432–440.
(f) Tomakinian, T.; Kouklovsky, C.; Vincent, G. Synlett 2015, 26, 1269– 1275. (g) Denizot, N.; Guillot, R.; Kouklovsky, C.; Vincent, G. Chem. -Eur. J. 2015, 21, 18953–18956.

(15) For a review on hydroarylation: de Haro, T.; Nevado, C. In *Comprehensive Organic Synthesis*, 2nd ed.; Knochel, P., Ed.; Elsevier: Amsterdam, 2014; pp 1621–1659.

(16) For a highlight on the electrophilicity of indoles: Bandini, M. Org. Biomol. Chem. **2013**, *11*, 5206–5212.

(17) The reaction of 3-phenethyl-N-Ac-indoles does not lead to 5membered ring 3,3-spiroindolines but to 2-hydroarylated indolines: Nandi, R. K.; Ratsch, F.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. *Chem. Commun.* **2016**, DOI: 10.1039/C6CC01654E.

(18) CCDC 1446909–1446912 (**9a**, **9d**, **9u**, and **14**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(19) For a review: Firooznia, F.; Kester, R. F.; Berthel, S. J. In *Heterocyclic Scaffolds II*:; Gribble, G. W., Ed.; Topics in Heterocyclic Chemistry; Springer: Berlin Heidelberg, 2010; pp 283–326.

(20) Selected examples: (a) Ikeda, M.; Ohno, K.; Takahashi, M.; Uno, T.; Tamura, Y.; Kido, M. J. Chem. Soc., Perkin Trans. 1 1982, 741–748.
(b) Ikeda, M.; Ohno, K.; Mohri, S.; Takahashi, M.; Tamura, Y. J. Chem. Soc., Perkin Trans. 1 1984, 405–412. (c) Hastings, D. J.; Weedon, A. C. J. Org. Chem. 1991, 56, 6326–6331. (d) Hastings, D. J.; Weedon, A. C. Tetrahedron Lett. 1991, 32, 4107–4110. (e) Oldroyd, D. L.; Weedon, A. C. J. Chem. Soc., Chem. Soc., Chem. Commun. 1992, 1491–1492.

(21) Related dearomative [2 + 2] annulations of indoles with allenes:
(a) Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. *Chem. Commun.* 2015, *51*, 2320–2323. (b) Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. *Chem. - Eur. J.* 2015, *21*, 18445–18453. (c) Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. *Adv. Synth. Catal.* 2012, *354*, 1658–1664. (d) Zhang, L. *J. Am. Chem. Soc.* 2005, *127*, 16804–16805. with alkynes:
(e) Davis, P. D.; Neckers, D. C. *J. Org. Chem.* 1980, *45*, 456–462. with carborynes: (f) Zhao, D.; Zhang, J.; Xie, Z. *J. Am. Chem. Soc.* 2015, *137*, 9423–9428.

(22) When we replaced the terminal monosubstituted alkene by a trisubstituted alkene, we did not obtain the desired cyclobutane but a tetrahydrocarbazole, see the Supporting Information.