

anti-Selective Asymmetric Henry Reaction Catalyzed by a Heterobimetallic Cu–Sm–Aminophenol Sulfonamide Complex

Yang Li,[†] Ping Deng,[†] Youmao Zeng,[†] Yan Xiong,[‡] and Hui Zhou^{*,†}

[†]School of Pharmaceutical Science, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China

 ‡ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China

Supporting Information

ABSTRACT: A novel heterobimetallic Cu/Sm/aminophenol sulfonamide complex has been developed by a convenient one-pot method for the *anti*-selective asymmetric Henry reaction. The corresponding *anti*- β -nitro alcohols are obtained in up to 99% yield, >30:1 dr, and 98% ee. The results of control experiments and ESI-MS analysis of the complex indicate that the monomeric bimetallic Cu/Sm/1 complex would be the active species.

ptically active β -nitro alcohols are key intermediates and building blocks for the synthesis of bioactive natural products and pharmaceutical agents.¹ The catalytic asymmetric Henry reaction is a useful, atom-economical, step-economical, carbon-carbon bond-forming reaction that affords enantiomerically enriched β -nitro alcohols.² Since the pioneering application of Shibasaki's heterometallic catalyst^{3,4} in the Henry reaction, increasing efforts have been directed toward developing novel catalytic systems. A series of metal complexes, especially dinuclear metal complexes (such as Shibasaki's heterobimetallic Cu/Sm,^{4g,h} Pd/La,^{6c,d} and Nd/Na^{6e,m-o} complexes, Trost's dinuclear Zn complex,^{4l,o} Hong's self-assembled dinuclear Co complex,^{5m} and Savoia's dinuclear Cu complex⁵ⁿ for Henry reaction or related aza-Henry reaction), as well as organocatalysts, were developed for the catalytic asymmetric Henry reaction. However, diastereo- and enantioselective Henry reactions between aldehydes and nitroethane or other nitroalkanes are more challenging for low reactivity and poor selectivity.⁶ Although great progress has been achieved, developing new catalysts for the diastereoselective and enantioselective Henry reaction of aldehydes with nitroethane is still necessary. Herein, we report a novel heterobimetallic Cu/Sm/1 complex (Scheme 1) generated in one pot for the anti-selective Henry reaction.

We recently reported an asymmetric Henry reaction with nitromethane as a donor promoted by a dinuclear nickel complex.⁵⁰ This catalytic system was not suitable for nitroethane or other nitroalkanes. Therefore, a series of aminophenol sulfonamide ligands derived from chiral diamine were screened for this conversion, and we found that **1** was a promising candidate.

The initial results of metal screening are summarized in Table 1. The combination of $Cu(OAc)_2$ and $Sm(O-iPr)_3$ with 1 afforded the corresponding product **4aa** in 90% yield with 14:1 *anti/syn* and 93% ee (entry 1, Table 1). Neither $Cu(OAc)_2$ nor $Sm(O-iPr)_3$ alone gave good results (entries 2–5, Table 1).

The 1:1:1 ratio of $Cu(OAc)_2/Sm(O-iPr)_3/1$ was also critical for good selectivity (entry 1 vs entries 6 and 7, Table 1). In the current catalytic system, $Cu(OAc)_2$ and $Sm(O-iPr)_3$, as well as the 1:1:1 ratio of Cu/Sm/1, were essential for good reactivity and selectivity.

To gain some insight into the complex, ESI-MS (electrospray ionization mass spectroscopy) studies were carried out.⁷ The spectrum of the 1:1:1 Cu/Sm/1 mixture with the additive iPr_2NEt displayed ions at m/z 1131.43 and 1279.42, which corresponded to Cu₂/1 and Cu/Sm/1. As the corresponding complexes between Cu(OAc)₂ and 1 could not catalyze this reaction even in the presence of 30 mol % of iPr_2NEt (entries 2 and 3, Table 1), we speculated that the 1:1:1 Cu/Sm/1 complex (Scheme 1) would be the active species.^{8,9}

It is worth mentioning that the addition order of $Cu(OAc)_2$ and $Sm(O-iPr)_3$ could hardly affect the ee values of the *anti*product (entries 1, 8, and 9, Table 1), whereas an inferior yield and dr were observed when reversing the addition order of $Cu(OAc)_2$ and $Sm(O-iPr)_3$ (entry 9 vs entries 1 and 8, Table 1). We speculated that the resulting active species by the stepwise method and the one-pot method were the same. So we chose the

Received: February 14, 2016

Scheme 1. Aminophenol Sulfonamide Ligand 1 and the Proposed Structure of the Heterobimetallic Cu/Sm/1 Complex

Table 1. Screening of Metal Salts^{*a,b*}

	-	РЬСНО	+ EtNOs	1) (<i>R</i> , <i>R</i>)-1 10 mol % M1 x mol % 2) M2 y mol % iPr₂NEt 30 mol % THF, -30 °C, 90 h		OH	
	,	lione	Lutoz			NO ₂	
		2a	3a			4aa	
entry	M1		M2		yield (%) ^c	anti/syn ^d	ee $(\%)^e$ (anti)
1	$Cu(OAc)_2$ (10 mol %)		$Sm(O-iPr)_3$ (10	mol %)	90	14:1	93
2	$Cu(OAc)_2$ (10 mol %)		none		nr		
3	Cu(OAc) ₂ (20 mol %)		none		nr ^f		
4	$Sm(O-iPr)_3$ (10 mol %)		none		23	2:1	0
5	$Sm(O-iPr)_3$ (20 mol %)		none		89	2:1	0
6	$Cu(OAc)_2$ (10 mol %)		$Sm(O-iPr)_3$ (20	mol %)	90	6:1	87
7	$Cu(OAc)_2$ (20 mol %)		$Sm(O-iPr)_3$ (10	mol %)	56	11:1	91
8 ^g	$Cu(OAc)_2$ (10 mol %)		$Sm(O-iPr)_3$ (10	mol %)	90	14:1	93
9	$Sm(O-iPr)_3$ (10 mol %)		$Cu(OAc)_2$ (10 r	mol %)	80	11:1	94

"Reactions were carried out on a 0.2 mmol scale (benzaldehyde) with nitroethane (0.2 mL) in THF (0.9 mL) in the presence of 1 (10 mol %), M1 ($x \mod \%$), and M2 ($y \mod \%$) at -30 °C for 90 h. ^bUnless otherwise noted, the catalyst was prepared as follows: 1 and M1 were stirred in THF at 35 °C for 1 h to generate the precatalyst; M2 was added to the precatalyst in THF, and stirring was continued for another 1 h to generate the catalyst. For details, see Supporting Information. ^cIsolated yield. ^dDetermined by chiral HPLC analysis (Chiralpak AD-H) for the *anti*-product. ^fNo reaction. ^g1, M1, and M2 were added in one pot.

Table 2. anti-Selective Henry Reactions with Various Aldehydes and Nitroalkanes^a

		RCI	HO + R'CH ₂ 2 3	1 NO ₂ — 1 T	0 mol % (<i>R,R</i>)- 0 mol % <i>i</i> Pr ₂ NI HF, -30 °C	Cu/Sm/ 1 ∃t►			
entry	R	2	R′	3	product	time (h)	yield (%) ^b	anti/syn ^c	ee (%) ^d
1	Ph	2a	CH ₃	3a	4aa	90	90	14:1	93
2	$2 - NO_2C_6H_4$	2b	CH ₃	3a	4ba	121	99	>30:1	96
3	4-F ₃ CC ₆ H ₄	2c	CH ₃	3a	4ca	87	99	11:1	92
4	$4-FC_6H_4$	2d	CH ₃	3a	4da	140	99	14:1	92
5	$2-MeC_6H_4$	2e	CH ₃	3a	4ea	115	68	16:1	89
6	3-MeC ₆ H ₄	2f	CH ₃	3a	4fa	115	98	24:1	96
7	$4-MeC_6H_4$	2g	CH ₃	3a	4ga	115	77	12:1	94
8	2-furyl	2h	CH ₃	3a	4ha	162	96	20:1	94
9	5-Br-2-furyl	2i	CH ₃	3a	4ia	116	99	24:1	94
10	PhCH=CH	2j	CH ₃	3a	4ja	112	97	>30:1	98
11 ^e	4-MeOC ₆ H ₄	2k	CH ₃	3a	4ka	162	68	11:1	92
12 ^e	1-naphthyl	21	CH ₃	3a	4la	162	93	24:1	88
13 ^e	2-naphthyl	2m	CH ₃	3a	4ma	162	99	14:1	92
14 ^e	2-thienyl	2n	CH ₃	3a	4na	162	78	16:1	95
15 ^f	<i>n</i> -hexyl	20	CH ₃	3a	40a	168	54	3:1	85
16 ^e	Ph	2a	CH_3CH_2	3b	4ab	168	56	20:1	86

^{*a*}Unless otherwise noted, all reactions were carried out on a 0.2 mmol scale of aldehyde with nitroalkane (0.2 mL) in THF (0.9 mL) in the presence of 10 mol % of Cu/Sm/1 generated in one pot and 30 mol % of iPr_2NEt at -30 °C. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR spectroscopy analysis. ^{*d*}Determined by chiral HPLC analysis for the *anti*-product. ^{*e*}40 mol % of iPr_2NEt was used. ^{*f*}50 mol % of iPr_2NEt was used.

Organic Letters

one-pot method to prepare the heterometallic catalyst, which would greatly facilitate the operation.

Next, the substrate scope of the reaction was evaluated, and the results are summarized in Table 2. Aryl aldehydes with either an electron-donating substituent or an electron-withdrawing substituent, as well as heteroaryl aldehydes, afforded the products in high yield, *anti*-selectivity, and ee (entries 2–9, Table 2). The α,β -unsaturated aldehyde 2j gave product 4ja with excellent yield, dr, and ee (entry 10, Table 2). For the less reactive aldehydes **2k**–**o**, more *i*Pr₂NEt was required for good conversion (entries 11–15, Table 2). The aliphatic aldehyde **2o** afforded product **2oa** in high ee, albeit with moderate yield and *anti*-selectivity (entry 15, Table 2). Besides, 1-nitropropane was also employed as the nucleophile to react with benzaldehyde. The corresponding product **4ab** was obtained with 20:1 *anti/syn* and 86% ee (entry 16, Table 2).

In summary, a highly efficient *anti*-selective catalytic asymmetric Henry reaction has been developed by using a novel heterometallic Cu/Sm/1 complex generated in one pot. Various *anti-β*-nitro alcohols were obtained in moderate to excellent yields with high to excellent enantioselectivities and moderate to excellent diastereoselectivities. Further investigations are underway in our laboratory for the detailed mechanism¹⁰ and the application of the desired catalyst to other reactions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00432.

Synthetic procedure for the ligand and complex, catalytic procedure, and NMR, MS, and HPLC spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: hzhou@cqmu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the generous financial support by the National Natural Science Foundation of China (20902114, 21372265), Fundamental and Advanced Research Projects of Chongqing City (No. cstc2013jcyjA10144), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ120307 and KJ1500221).

REFERENCES

 (1) (a) Rosini, G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I. C., Heathcock, H., Eds.; Pergamon: New York, 1991; Vol. 2, p 321. (b) Shibasaki, M.; Gröer, H. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 3, p 1075. (c) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: Weinhem, Germany, 2001; Chapter 3, p 30.

(2) For reviews on the asymmetric Henry reaction, see: (a) Luzzio, F. A. *Tetrahedron* **2001**, *57*, 915–945. (b) Palomo, C.; Oiarbide, M.; Mielgo, A. *Angew. Chem., Int. Ed.* **2004**, *43*, 5442–5444. (c) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua, N. C. *Tetrahedron: Asymmetry* **2006**, *17*, 3315–3326. (d) Palomo, C.; Oiarbide, M.; Laso, A. *Eur. J. Org. Chem.* **2007**, 2007, 2561–2574. (e) Kumagai, N.; Shibasaki, M. *Angew. Chem., Int. Ed.* **2011**, *50*, 4760–4772. (f) Milner, S. E.; Moody, T. S.; Maguire, A. R. *Eur. J. Org. Chem.* **2012**, 2012, 3059–3067. (g) Kumagai, N.; Shibasaki, M. *Angew. Chem., Int. Ed.* **2013**, *52*, 223 and refs therein.

(3) (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. **1992**, 114, 4418–4420. (b) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki, M. J. Org. Chem. **1995**, 60, 7388–7389.

(4) For selected literature on multimetallic catalysts, see: (a) Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1236-1256. (b) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187-2210. (c) Matsunaga, S.; Shibasaki, M. Bull. Chem. Soc. Jpn. 2008, 81, 60-75. (d) Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Acc. Chem. Res. 2009, 42, 1117-1127. (e) Matsunaga, S.; Shibasaki, M. Synthesis 2013, 45, 421-437. (f) Matsunaga, S.; Shibasaki, M. Chem. Commun. 2014, 50, 1044-1057. (g) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 4900-4901. (h) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925-4934. (i) Trost, B. M.; Bartlett, M. J. Acc. Chem. Res. 2015, 48, 688-701. (j) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003-12004. (k) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367-3368. (1) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861-863. (m) Trost, B. M.; Weiss, A. H.; Von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8-9. (n) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778-2779. (o) Trost, B. M.; Lupton, D. W. Org. Lett. 2007, 9, 2023-2026. (p) Trost, B. M.; Müller, C. J. Am. Chem. Soc. 2008, 130, 2438-2439. (q) Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572-4573. (r) Park, J.; Hong, S. Chem. Soc. Rev. 2012, 41, 6931-6943 and refs therein.

(5) For selected examples of the catalytic asymmetric Henry reaction between nitromethane and carbonyl compounds, see: (a) Corey, E. J.; Zhang, F. Y. Angew. Chem., Int. Ed. 1999, 38, 1931-1934. (b) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881-3884. (c) Christensen, C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001, 2222-2223. (d) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692-12693. (e) Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167-13171. (f) Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.; Kantam, M. L. Chem. Commun. 2006, 4066-4068. (g) Li, H. M.; Wang, B. M.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732-733. (h) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929-931. (i) Xiong, Y.; Wang, F.; Huang, X.; Wen, Y. H.; Feng, X. M. Chem. - Eur. J. 2007, 13, 829-833. (j) Qin, B.; Xiao, X.; Liu, X. H.; Huang, J. L.; Wen, Y. H.; Feng, X. M. J. Org. Chem. 2007, 72, 9323–9328. (k) Ma, K. Y.; You, J. S. Chem. - Eur. J. 2007, 13, 1863-1871. (l) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Ventrici, C. Chem. Commun. 2007, 616-618. (m) Park, J.; Lang, K.; Abboud, K. A.; Hong, S. J. Am. Chem. Soc. 2008, 130, 16484-16485. (n) Gualandi, A.; Cerisoli, L.; Stoeckli-Evans, H.; Savoia, D. J. Org. Chem. 2011, 76, 3399-3408. (o) Liu, Y.; Deng, P.; Li, X.; Xiong, Y.; Zhou, H. Synlett 2014, 25, 1735-1738. (p) Tanaka, K.; Iwashita, T.; Yoshida, E.; Ishikawa, T.; Otuka, S.; Urbanczyk-Lipkowska, Z.; Takahashi, H. Chem. Commun. 2015, 51, 7907-7910 and refs therein.

(6) For selected examples of highly diastereo- and enantioselective Henry reactions, see: (a) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054-2055. (b) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392-12393. (c) Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230-3233. (d) Sohtome, Y.; Kato, Y.; Handa, S.; Aoyama, N.; Nagawa, K.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10, 2231-2234. (e) Nitabaru, T.; Nojiri, A.; Kobayashi, M.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 13860-13869. (f) Uraguchi, D.; Nakamura, S.; Ooi, T. Angew. Chem., Int. Ed. 2010, 49, 7562-7565. (g) Cheng, L.; Dong, J. X.; You, J. S.; Gao, G.; Lan, J. B. Chem. - Eur. J. 2010, 16, 6761-6765. (h) Jin, W.; Li, X. C.; Wan, B. S. J. Org. Chem. 2011, 76, 484–491. (i) Xu, K.; Lai, G. Y.; Zha, Z. G.; Pan, S. S.; Chen, H. W.; Wang, Z. Y. Chem. - Eur. J. 2012, 18, 12357-12362. (j) Lang, K.; Park, J.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 1620-1624. (k) White, J. D.; Shaw, S. Org. Lett. 2012, 14, 6270-6273. (l) Qin, D. D.; Yu, W.; Zhou, J. D.; Zhang, Y. C.; Ruan, Y. P.; Zhou, Z. H.; Chen, H. B. Chem. - Eur. J. 2013, 19, 16541-16544. (m) Ogawa, T.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. **2013**, 52, 6196–6201. (n) Sureshkumar, D.; Hashimoto, K.; Kumagai, N.; Shibasaki, M. J. Org. Chem. **2013**, 78, 11494–11500. (o) Hashimoto, K.; Kumagai, N.; Shibasaki, M. Org. Lett. **2014**, 16, 3496–3499.

(7) For more detailed results of ESI-MS analysis, see Supporting Information.

(8) For the structures of related titanium complexes of *N*-sulfonylated β -amino alcohols, see: (a) Wu, K. H.; Gau, H. M. *Organometallics* **2003**, 22, 5193–5200. (b) Wu, K. H.; Gau, H. M. *Organometallics* **2004**, 23, 580–588. (c) Hsieh, S. H.; Gau, H. M. *Chirality* **2006**, 18, 569–574 and refs therein.

(9) For the discussion of the speculated structure of the complex, see Supporting Information.

 $(\hat{10})$ The proposed working model is described in Supporting Information.