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Samarium diiodide promoted the intramolecular reductive
couplings of N-alkylated indole and pyrrole derivatives 9–12
and 14 to afford products 15–19 that incorporate seven- and
eight-membered rings. They were obtained in good yields
and generally with excellent diastereoselectivities. Up to four
contiguous stereogenic centres are controlled in this transfor-

Introduction

Recent advances in the employment of samarium diio-
dide[1] have documented that this coupling reagent effec-
tively promotes a number of important and useful synthetic
reactions. Work in our laboratory has so far focused on the
stereoselective formation of five- and six-membered rings
by samarium ketyl cyclizations of suitably substituted β- or
γ-N-substituted indole and pyrrole derivatives,[2] which pro-
vided access to novel functionalized bi- and tricyclic com-
pounds (Scheme 1).[3–5] Herein we report the extension of
these studies in order to synthesize seven- and eight-mem-
bered rings[6] incorporating indole and pyrrole units. The
general importance of heterocyclic compounds derives from
their presence in numerous biologically active compounds.
Development of new methods for stereoselective synthesis
of heterocycles with complex functional groups is hence of
great value. More specifically, the indole and pyrrole sub-

Scheme 1. Samarium diiodide induced cyclizations of hetaryl
ketones to bicyclic and tricyclic products containing indole and
pyrrole substructures.
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mation, which is explained by a highly ordered transition
structure with the samarium alcoholate moiety preferring an
equatorial position.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2006)

structures are obviously “privileged”[7] since these heterocy-
cles are present in a myriad of pharmaceutically important
compounds.[8]

Results and Discussion

The syntheses of the required precursor indoles or pyr-
roles started with the N-alkylation of commercially avail-
able indole or pyrrole derivatives 4 and 5 by employing so-
dium hydride followed by addition of alkyl iodides 6, 7 and
8 containing the protected carbonyl group;[9] these com-
pounds were obtained in three routine steps (ketaliz-
ation,[10] reduction[10] and iodination[11]) from correspond-
ing esters 1–3.[12] Hydrolysis of the ketals in the presence of
p-toluenesulfonic acid led to desired precursors 9–14 in
good overall yields (Scheme 2).[13]

We then studied the scope and limitations of the samar-
ium diiodide induced ketyl cyclization reactions by examin-
ing the feasibility of seven- and eight-membered ring forma-
tion with the precursors prepared. Substrates 9–14 were
generally subjected to 2.5 equiv. of samarium diiodide in
THF along with an excess of HMPA[14] (10 equiv.) and two
equiv. of phenol as a proton source.[15] The formation of
seven-membered rings (Scheme 3) was successful with in-
dole derivative 9 or pyrrole 12.[16] Expected bi- and tricyclic
products 15 and 16 were obtained in good yields and in a
diastereomerically pure form, which demonstrates that this
method allows for the generation of three contiguous ste-
reogenic centres with high selectivity. The relative configu-
rations of the products were determined by NOE experi-
ments. The mechanism of this type of reaction is usually
described[2,3] as a sequence of initial electron transfer to the
carbonyl group generating a radical anion (samarium ke-
tyl), formation of the new ring by intramolecular addition
of the samarium ketyl to the (het)aryl group, a second elec-
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Scheme 2. Synthesis of precursor indoles 9–11 and pyrroles 12–14.

tron transfer and subsequent regioselective protonation
leading to the corresponding product.[17]

Scheme 3. Formation of seven-membered heterocyclic compounds
15 and 16 by samarium diiodide induced cyclization of precursors
9 and 12.

We recently suggested[1b,2,3] that the high degree of dia-
stereoselectivity for this type of cyclization should be due
to a highly ordered cyclic transition structure of the ketyl
addition to the (het)aryl ring in which the samarium alco-
holate prefers the sterically more favourable equatorial po-
sition (Scheme 4). This model nicely explains the relative
configuration of the stereogenic centres within the seven-
membered ring. For compounds 15 and 16, the configura-
tion of the carbon bearing the alkoxycarbonyl group seems
to be governed by thermodynamic control, which (by de-
protonation/protonation) positions this substituent at the
convex face of the molecule.[18]

The synthesis of eight-membered rings (Scheme 5) is also
possible; however, only indole derivative 10 furnished ex-
pected product 17 in moderate yield, whilst pyrrole 13 gave
only traces (�5%) of a cyclized product together with small
amounts of starting material and unidentified products. We
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Scheme 4. Transition structure of the cyclization of 9 leading to
tricyclic product 15 (HMPA ligands are omitted for clarity and
simplicity).

also examined the possibility of cyclobutanol formation
and therefore prepared a precursor analogous to 9 but with
just one methylene group as a spacer unit between the in-
dole nitrogen and the carbonyl group. Not surprisingly, the
reaction failed to give the corresponding tricyclic com-
pound with an incorporated four-membered ring and only
the corresponding secondary alcohol that was formed by
reduction of the carbonyl group was isolated.

Scheme 5. Conversion of indole derivative 10 into tricyclic product
17 containing an azocin moiety.

The intramolecular samarium diiodide induced ketyl
couplings were also examined with precursors containing
a cycloalkanone moiety. Compounds 11 and 14 efficiently
furnished anticipated polycyclic products 18 and 19 in very
good yields (Scheme 6). In the case of indole derivative 18,
four contiguous stereogenic centres were established in a
highly selective manner (dr = 94:6), whereas the formation
of pyrrole derivative 19 proceeded less selectively (dr =
75:25). The structural assignments for the major dia-
stereomers as depicted in Scheme 6 are based on NOE ex-

Scheme 6. Ketyl couplings of cyclohexanone derivatives 11 and 14
leading to products 18 and 19 (only the major diastereomers are
depicted, all compounds are racemic).
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periments and by analogy considering our earlier ketyl cyc-
lization experiments with cyclohexanone derivatives.[19] For
the major diastereomer of 19, an X-ray analysis unequivo-
cally proved the constitution and configuration of this com-
pound.[20] The minor diastereomers of 18 and 19 very likely
have cis-configuration of the substituents at the two indole
carbons; however, these assignments have to be confirmed
by additional experiments.

Conclusions

In summary, we have demonstrated that the intramolecu-
lar samarium ketyl addition to suitable indole and pyrrole
acceptors generates seven- and eight-membered rings con-
taining these heterocycles. Yields are moderate to very good
and excellent diastereoselectivities are observed. Up to four
contiguous stereogenic centres can be established in a
stereoselective fashion. Extension to other substrates to
further investigate the scope and limitations of this ring
forming process, as well as application of this method to the
synthesis of natural products or analogues, are in progress.
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