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Abstract
The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective

targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be

prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not

stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface

drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to

synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in

our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.
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Introduction
Numerous researchers are interested in the development of

superparamagnetic iron oxide nanoparticles (SPIONPs) because

of their biocompatibility which allows there in vivo use both for

diagnosis in magnetic resonance imaging and in therapy [1,2].

Most often, it is necessary to modify the surface of SPIONPs to

increase the metabolic stability.

To overcome this main drawback, the NP surface could be

derivatized by various functional groups. These ligands have to

possess certain chemical and biological properties as the flexi-

bility, the hydrophilicity and an absence of in vivo toxicity. In

addition, the nanoparticulate systems so obtained must be stable

in the various biological compartments and they must be

stealthy to avoid the elimination by macrophages.

For this purpose, appropriate coatings have already been re-

ported [3,4]. Some of which consist in the NP surface

modification using hydrophilic polymers (dextran, PEG) or
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Scheme 2: Synthetic strategy of PEG-HMBPs 1.

bifunctional molecules substituted by amines, thiols, carboxyl-

ates, sulfonates, phosphonates or bisphosphonates [5-7]. Partic-

ularly, a strong interaction between the NPs and the phos-

phonic moiety was observed and more interestingly the best

results were obtained with bisphosphonate products [8,9]. For

the past years, our group has focused its interest in the synthe-

sis of various functionalized hydroxymethylene bisphospho-

nates (HMBPs) [10] and their applications in health science,

especially in antitumor therapy [11-13]. Herein, we described

the synthesis of novel bifunctional PEG-HMBP compounds in

order to employ them as anchoring agents for SPIONPs

(Figure 1).

Figure 1: Bifunctional PEG-HMBPs 1.

Results and Discussion
For this family of compounds, the HMBP moiety has to be built

starting from a modified PEG chain. The HMBP introduction

could be achieved by several reported methodologies starting

from an acid chloride (Scheme 1).

Scheme 1: Direct methods for the 1-hydroxyalkylidenebisphosphonic
acid synthesis.

The first method, used in the industry, allows accessing the

desired products in one step under rather harsh conditions [14].

1-Hydroxyalkylidenebisphosphonic acids have also been ob-

tained in good yields. However, this widely used method seems

not to be compatible with breakable and delicate functionalized

substrates. In contrast, our lab has developed a new synthetic

strategy starting from an acid chloride and tris(trimethylsilyl)

phosphite, followed by a methanolysis step [15].

This one-pot procedure allows the synthesis of various aliphat-

ic and aromatic bisphosphonic acids under mild conditions.

Moreover, reactions were very fast and pure products were ob-

tained after evaporation of the volatile fraction. The scope of

this reaction was successfully widened in aliphatic and aromat-

ic anhydride [15-21]. The introduction of the HMBP moiety in

presence of the PEG tether seems to be critical due to its high

sensitivity under harsh conditions. Wherefore, our methodolo-

gy, which exhibits a high tolerance to various functionalized

groups, appears to be an adequate way to introduce the HMBP

chain in presence of the PEG moiety.

To obtain the PEG-HMBP 1 compound family, the synthetic

strategy consists in mono-protecting and/or mono-functional-

izing commercially available PEGs followed by the lab-made

HMBP methodology introduced previously (Scheme 2).

Starting materials, the free alcohol PEG and monomethyl ether

PEGs (compounds 3a,b) with various chain lengths (n = 4, 7

and 12) were commercially available. Firstly, the free alcohol

PEG was selectively monoprotected with a benzyl group

(Scheme 3).

Only one alcohol function was indeed deprotonated with one

equivalent of sodium hydride at −78 °C in THF after the solu-

tion was stirred for 12 hours at room temperature. The alcohol-

ate intermediate reacted smoothly with benzyl bromide at room

temperature to afford the monobenzylated PEG 2 in 77% yield

(Table 1, entry 1). Afterwards, the alcohols 2 and 3a,b have to

be oxidized to the corresponding carboxylic acids 6 and 7a,b.

First of all, the direct oxidation reported in the literature in one

step has been performed. Thus, tested oxidants were the Jones
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Scheme 3: Synthesis of PEG-HMBPs 1 and 1’.

Table 1: Synthesis of PEG-HMBPs 1,1’and 10.

Entry Compound R n Yield (%) 31P δ (ppm)

1 2 Bn 4 77 –
2 4 Bn 4 89 –
3 5a Me 7 79 –
4 5b Me 12 80 –
5 6 Bn 4 72 –
6 7a Me 7 82 –
7 7b Me 12 72 –
8 8 Bn 4 quant. –
9 9a Me 7 quant. –
10 9b Me 12 quant. –
11 1 Bn 4 78 16.8
12 1’a Me 7 47 17.2
13 1’b Me 12 43 17.2
14 10 H 4 72 16.2

aIsolated yield. bproton decoupling 31P NMR experiment.

reagent [22], potassium permanganate [23], with catalytic

o-iodoxybenzoic acid (IBX) in oxone [24] and catalytic 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO) with bis(acetoxy)iodo-

benzene (BAIB) [25]. The first two conditions led to a PEG

chain cleavage and the recovery of benzoic acid from alcohol 2.

Besides, the mixture IBX/oxone gave the expected product

inseparable of IBX byproducts. Only oxidation using TEMPO

and BAIB furnished the pure corresponding carboxylic acid.

Nevertheless, the low obtained yields encouraged us to test a

strategy in two steps via an aldehyde. Fortunately, the following

two-step procedure was more effective. The alcohol derivatives

2 and 3a,b were treated with dimethyl sulfoxide, oxalyl chlo-

ride and triethylamine in dichloromethane at −55 °C. Under

these classical Swern conditions, the corresponding products 4

and 5a,b were isolated in excellent yields from 79% to 89%

(Table 1, entries 2–4). The aldehydes 4 and 5a,b were next

smoothly oxidized in the presence of a catalytic amount of PCC

and a the co-oxidative agent H5IO6 in acetonitrile at 0 °C. The

PEG 6 and 7a,b were obtained in good yields (Table 1, entries

5–7).

Finally, the optimized two-step procedure enabled us to isolate

the expected carboxylic acids 6 and 7a,b which are key inter-

mediates in the synthesis of PEG-HMBPs.

The carboxylic acids 6 and 7a,b reacted quantitatively with

oxalyl chloride to give acyl chlorides 8 and 9a,b at room tem-

perature after 24 hours (Table 1, entries 8–10). The completion

of the reaction was monitored by infrared spectroscopy with the

disappearance of the hydroxy absorption band and the shifting

of the carbonyl vibration band to about 1800 cm−1. The addi-

tion of two equivalents of tris(trimethylsilyl) phosphite to the

acyl chloride derivatives 8 and 9a,b yielded the corresponding

silylated PEG-HMBP.

The formation of silylated bisphosphonate was monitored by
31P NMR. After evaporation of volatile compounds under

vacuum the silylated PEG-HMBP was hydrolyzed with methan-

ol at room temperature for 24 hours. After methanol evapora-

tion, the crude PEG-HMBP containing phosphorous acid was

purified by successive washes with dry diethyl ether. The pure

targeted PEG-HMBPs 1 and 1’a,b were then obtained in moder-

ate yields (Table 1, entries 11–13). The treatment of 1 with

dihydrogen and palladium on charcoal in water allowed

cleavage of the benzyl moiety and led to the HO-PEG-HMBP

10 in 72% yield (Table 1, entry 14). The ligand 10 permitted to

obtain new gadolinium phosphate nanocrystals with lumines-

cent properties [26].

Therefore, we considered the syntheses of other compounds

which possess azido or amino functional groups. The azido
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Scheme 4: Syntheses of HMBP-PEG-N3 16 and HMBP-PEG-NH3
+ 17.

Scheme 5: Synthesis of HMBP-PEG-COOH 23.

products will allow us to perform click chemistry to introduce

various functionalities. Moreover, the amino derivatives will be

easily obtained by reducing the azido group. As previously

mentioned, the first step was a selective mono-activation of

PEG using para-toluenesulfonyl chloride in the presence of so-

dium hydroxide in a water/THF mixture (Scheme 4).

The tosylated products 11a,b were obtained after three hours at

0 °C with a 95% yields. Next, the monoactivated compounds

11a,b were substituted by sodium azide in DMF at 60 °C within

five hours. The azido compounds 12a,b were obtained in 83%

and 81% yield, respectively. The alcohols 12a,b were subse-

quently firstly deprotonated with NaH in DMF and the gener-

ated alcoholates were stirred 16 hours with ethyl bromoacetate

giving the expected esters 13a,b in moderate yields.

The saponification reactions of the esters 13a,b were carried out

with sodium hydroxide in methanol. The completion of the

reactions was controlled by TLC. After neutralization with a

cationic exchange Dowex® 50WX2 resin, the corresponding

carboxylic acids 14a,b were isolated in quantitative yields. The

HMBP moiety was subsequently incorporated by the lab-made

methodology previously described. The carboxylic acids 14a,b

were converted into the expected HMBP-PEG-N3 16a,b via the

corresponding acyl chloride 15a,b. The reactions were moni-

tored by 31P NMR, compounds 16a and 16b were obtained after

12 and 18 hours, respectively.

Thus, HMBP-PEG-N3 16a,b were obtained after purification in

72% and 74% yield and characterized by a singlet in 31P [27]

NMR at about 17 ppm. Finally, the reduction of the azido com-

pounds 16a,b in the presence of palladium on charcoal and

dihydrogen led to the targeted amino-PEG-HMBPs 17a and

17b, respectively in moderate 62% and 68% yields.

In order to access available PEG-HMBPs functionalized with a

primary amine or a carboxylic acid group usable in peptidic

coupling with various molecules for example, the HMBP-PEG-

COOH 23 was synthesized (Scheme 5). This compound was ob-

tained in six steps starting from a free alcohol four-unit PEG. It
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reacted with ethyl bromoacetate after mono-deprotonation using

sodium hydride in THF at −78 °C for 12 hours at room temper-

ature giving PEG 18. HMBP-PEG 22 was next synthesized in

four steps with satisfying yields in a similar strategy previously

described for compounds 1 and 1’a,b. The last step was the

saponification of the ethyl ester group. Different usual condi-

tions were tested, leading to partial degradation of the HMBP.

The use of a diluted aqueous solution of potassium hydroxide

(0.1 M) followed by a protonation with a Dowex® 50WX2 H+

resin allowed us to obtain the expected HMBP-PEG-COOH 23

in 85% yield.

Conclusion
In summary, novel bifunctional PEG-HMBPs ligands for the

coating of iron oxide nanoparticles have been synthesized. The

procedure is efficient to introduce different functional groups

such as azide, carboxylic acid, amine permitting further cou-

pling reactions with a drug, protein or antibody. The use of PEG

polymers with chains of different lengths has also given satis-

fying results. This modulation would allow improving the nano-

particles stealth in vivo. Further studies in this area and their ap-

plications will be reported in due course.
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