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Due to the versatility of the cyclopropane unit in organic
synthesis and the occurrence of a number of important cy-
clopropane-containing natural products and synthetic mate-
rials, the synthesis of cyclopropanes has drawn considerable
attention.[1] The most commonly used route is the transition-
metal-catalyzed decomposition of diazo compounds in the
presence of an alkene, in which a formal [2+1] cycloaddition
of metal–carbene complexes to alkenes proceeds rapidly[2]

and excellent stereoselectivity can be achieved in many
cases.[3] Nevertheless, in consideration of the stability and
operability of diazo compounds without an electron-with-
drawing group, N-tosylhydrazones are readily prepared
from carbonyl compounds and are likely to have remarkable
synthetic potential as an in situ source of diazo com-
pounds.[4] This possibility extends the current methods for
the modification of carbonyl compounds.

After decades of development, palladium-catalyzed
carbon–carbon bond-forming reactions can be recognized as
one of the cornerstones in current organic synthetic chemis-
try.[5] The impressive selectivity, availability, and functional-
group tolerance illustrates the tremendous enabling ability
of these modern synthetic tools.[6] Moreover, sequential
transformations and multifarious coupling partners, ranging
from traditional organic reagents to organometallic reagents,
also promote the efficiency and application in total synthesis
of this type of reaction.[7]

Recently, great efforts have been made to develop Pd-cat-
alyzed carbene cross-coupling reactions based on N-tosylhy-
drazones due to these advantages.[8] With relation to our in-
terest in palladium chemistry,[9] we envisioned the possibility
of exploring a Pd-catalyzed, new, intermolecular cross-cou-
pling reaction between N-tosylhydrazones and functional-
ized terminal alkenes.

At the outset of this investigation, we explored the Pd-
catalyzed reaction between N-tosylhydrazone (1 a) and
acrylamide (2 a ; Scheme 1) because in comparison with Rh,
Ru, Co, and Cu metal–carbenes, Pd metal–carbenes are op-

timal for reactions involving electron-deficient rather than
electron-rich alkenes.[10] Only a trace amount of the cyclo-
propane-containing product 3 a was detected when an anhy-
drous solvent was used. After extensive screening of the re-
action conditions, the yield rose to about 30 % when a hy-
drous solvent was used. This implied that the product yield
was dependent on the concentration of water in the reac-
tion. Initial studies elucidated that the electron-deficient ter-
minal alkenes could be effectively cyclopropanated by using
the Pd–carbene catalyst when 2.0 equivalents of water were
added.[11]

The investigation of different catalysts convinced us that
the palladium catalyst could not be neglected in this reac-
tion (Table 1, entry 1). A dramatic suppression effect caused
by extra ligands resulted in lower yields (Table 1, entries 2–
8). As a consequence, palladium acetate was chosen to cata-
lyze this cross-coupling reaction.

With the optimized reaction conditions, we then studied
the scope of this reaction by using various N-tosylhydra-
zones and acrylamides. As illustrated in Table 2, the cross-
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Scheme 1. Initial studies of water concentration.

Table 1. Investigation of the catalyst.[a]

Entry Catalyst Yield[b] [%]

1 – 0
2 Pd ACHTUNGTRENNUNG(OAc)2 73 (68)
3 PdCl2 45
4 Pd ACHTUNGTRENNUNG(OAc)2

[c] 42
5 ACHTUNGTRENNUNG[PdCl2 ACHTUNGTRENNUNG(PPh3)2] 55
6 ACHTUNGTRENNUNG[PdCl2 ACHTUNGTRENNUNG(CH3CN)2] 32
7 [Pd ACHTUNGTRENNUNG(dba)2] 35
8 [Pd ACHTUNGTRENNUNG(PPh3)4] 50

[a] Reaction conditions: 1a (0.25 mmol), 2 a (0.25 mmol), a catalyst
(10 mol %), H2O (2.0 equiv), and tBuOLi (3.0 equiv) in CH3CN (3 mL,
distilled) for 14 h under N2. [b] Determined by GC, number in parenthe-
ses is isolated yield. [c] PPh3 (25 mol %) was added.
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coupling reaction proceeds smoothly with a wide range of
substrates to provide moderate to good yields. The cross-
coupling reaction of aromatic N-tosylhydrazones containing
electron-withdrawing or electron-donating groups gave the
desired products 3 a–3 f (Table 2). The naphthyl N-tosylhy-
drazone was also a suitable substrate for this reaction (3 g).
Heterocyclic N-tosylhydrazones, such as those based on

furan and benzofuran, also reacted smoothly with acryl-ACHTUNGTRENNUNGamide under similar conditions (3 h and 3 i). Notably, cyclic
N-tosylhydrazones performed well and gave the correspond-
ing products (3 j–3 l) in moderate yield. The steric hindrance
of N-benzyl-N-(tert-butyl)acrylamide implied that it would
not be a useable substrate; however, it reacted well with
substrates containing either electron-withdrawing or -donat-
ing groups to give the products 3 m and 3 n. Remarkably, the
formation of 3 m was completely stereoselective, and the
structure was confirmed by X-ray diffraction (Scheme 2).
An acrylamide substrate containing a morpholine fragment

was also found to be a reasonable coupling partner (3 o and
3 p). Encouraged by these initial findings, the a,b-unsaturat-
ed ketones were examined to provide a more extensive
scope of the electron-deficient terminal alkenes that suit this
strategy. The coupling reactions between N-tosylhydrazones
and the ketones proceeded effectively and a series of chain
products, shown in Table 3, were obtained. The reaction was
not significantly affected by the substituents on the aromatic
ring of the N-tosylhydrazones. Electron-donating and -with-
drawing groups were tolerated under the reaction conditions
(5 a–5 d). Naphthyl, cyclic, and heterocyclic N-tosylhydra-
zones also underwent smooth reactions to afford the corre-
sponding products (5 e–5 g) in good yields. The ketone sub-
strate containing a long aliphatic carbon chain was also a
good coupling partner (5 h). The reactions of both alkyl- and
aryl-substituted N-tosylhydrazones were performed in a
highly stereoselective manner to produce compounds 5 i and
5 j ; however, the reaction results were more complicated
when other aryl-substituted ketone substrates were treat-
ed.[11] In these cases, yields were low or only trace amounts
were obtained, and mixtures of chain and cyclopropane
product were detected.

To determine how water promotes this cross-coupling re-
action, two deuterium-labeling experiments were carried out
(Scheme 3). Under the optimized conditions, 2.0 equivalents
of D2O were added to the reaction instead of H2O (Sche-
me 3, a). Similarly, the deuterated substrate [D3]-1 a was re-
acted with 2 a (Scheme 3, b). The results suggest that the cy-
clopropane products might not directly originate from a
metallacyclobutane intermediate.[11]

The desired chain or cyclopropane product was not de-
tected when the N-tosylhydrazone derived from benzalde-
hyde (6 a) was subjected to reactions with the functionalized
terminal alkenes (Scheme 4), indicating that the b-hydrogen
atoms may participate in the reaction processes. Although

Table 2. Palladium-catalyzed cross-coupling of various N-tosylhydrazones
and acrylamides.[a]

[a] Reaction conditions: 1 (0.25 mmol), 2 (0.25 mmol), PdACHTUNGTRENNUNG(OAc)2

(10 mol %), H2O (2.0 equiv), and tBuOLi (3.0 equiv) in CH3CN (3 mL,
distilled) for 14 h under N2. [b] Isolated yield.

Scheme 2. X-ray crystal structure of 3 m.
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the desired cyclopropane products were not synthesized
when ketones were applied, this result would be helpful for
understanding the mechanism of this reaction system. A fea-
sible mechanism derived from the acquired results was con-
ceived (Scheme 5).

Decomposition of the diazo compound, which is generat-
ed in situ from N-tosylhydrazone in the presence of base, by
a palladium catalyst leads to the palladium–carbene A.[4] Cy-
cloaddition of carbene A to an electron-deficient terminal
alkene affords a metallacyclobutane intermediate, B or C.
Intermediate D would be produced from C by a b-hydrogen
elimination process (Scheme 5, route 1).[12] The second b-hy-
drogen elimination might be suppressed by a stronger coor-
dination effect resulting from resonance isomerization.[13]

Amide intermediates D then undergo an alkene insertion to
give cyclopropane structures.[14] A conceivable steric state
(E) may be responsible for the complete stereoselectivity of
the reaction. Considering the deuterium-labeling experi-
ments (Scheme 2), reductive elimination and protonolysis[15]

are expected to work together to finish the last procedure
and form compound F (Scheme 6).

The weaker coordination effect of the ketone intermedi-
ates G is likely to make an alkene insertion unachievable,
instead leading to chain products H (Scheme 5, route 2).[16]

Probably, the water acts as an additional proton source and
ligand to restrain the b-hydro-
gen elimination process.[17]

In conclusion, we have un-
covered an alternative protocol
for the Pd-catalyzed intermo-
lecular cross-coupling reaction
of electron-deficient terminal
alkenes and N-tosylhydrazones.
Notably, the presence of water
substantially promotes both
cascade reaction routes, by
which diverse C�C bonds
could be created as a result of
variations in the the electron-
withdrawing group of the al-
kenes. Further mechanistic
studies and the application of
this strategy to the selective
synthesis of C�C bonds, de-

Table 3. Palladium-catalyzed cross-coupling of various N-tosylhydrazones
and ketones.[a]

[a] Reaction conditions: 1 (0.25 mmol), 4 (0.35 mmol), PdACHTUNGTRENNUNG(OAc)2

(10 mol %), H2O (2.0 equiv), and tBuOLi (3.0 equiv) in CH3CN (3 mL,
distilled) for 14 h under N2. [b] Isolated yield. [c] No water was added.
[d] The E/Z selectivity was determined by 1H NMR spectroscopy.

Scheme 3. Deuterium-labeling experiments.

Scheme 4. Control experiments.

Scheme 5. Proposed reaction mechanism.

Chem. Eur. J. 2012, 00, 0 – 0 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org

These are not the final page numbers! ��
&3&

COMMUNICATIONPd-Catalyzed Cross-Coupling Reactions of Electron-Deficient Alkenes

www.chemeurj.org


pending on the electronic nature of substrates, are currently
under investigation.

Experimental Section

General procedure for the reaction of N-tosylhydrazone (1 a) and N,N-di-
methylacrylamide (2 a): Pd ACHTUNGTRENNUNG(OAc)2 (5.6 mg, 0.025 mmol), CH3CN (3 mL),
N-tosylhydrazone (72 mg, 0.25 mmol), N,N-dimethylacrylamide (25 mg,
0.25 mmol), water (9 mg, 0.5 mmol), and tBuOLi (60 mg, 0.75 mmol)
were added successively to a Schlenk tube. After stirring for 14 h at 90 8C
under a nitrogen atmosphere, the mixture was cooled to room tempera-
ture. Ethyl acetate and brine were added sequentially and the layers
were separated. The aqueous phase was extracted twice with ethyl ace-
tate. The combined organic layers were purified by flash column chroma-
tography on silica gel by using light petroleum ether/ethyl acetate (2:1,
v/v) as the eluent, which furnished the desired product 3a as a yellow oil
(35 mg, 68 %). IR (KBr): ñmax = 3061, 2927, 1643, 1505, 1457, 1387,
697 cm�1; 1H NMR (400 MHz, CDCl3): d =7.27–7.32 (m, 4H), 7.19–7.23
(m, 1H), 3.10 (s, 3H), 3.02 (s, 3H), 1.99 (dd, J= 8.3, 6.0 Hz, 1H), 1.58
(dd, J =5.8, 4.9 Hz, 1H), 1.41 (s, 3 H), 1.38 ppm (dd, J= 8.4, 4.8 Hz, 1 H);
13C NMR (100 MHz, CDCl3): d=170.37, 145.80, 128.53, 126.12, 37.49,
35.63, 29.68, 27.59, 19.46, 19.09 ppm; HRMS (ESI): m/z calcd for
C13H17NO: 204.1383 [M+H+]; found: 204.1388.
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Palladium-Catalyzed Cross-Coupling
Reactions of Electron-Deficient
Alkenes with N-Tosylhydrazones:
Functional-Group-Controlled
C�C Bond Construction

In the zone : A palladium-catalyzed
cross-coupling reaction of electron-
deficient alkenes with N-tosylhydra-
zones, which affords diverse C�C
bonds resulting from the functional-
group-controlled effect, is reported

(see scheme). These cascade transfor-
mations present remarkable stereose-
lectivity and a high synthetic potential.
The presence of water substantially
promotes both reaction routes.
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