Tetrahedron Letters, Vol.31, No.48, pp 7063-7064, 1990 Printed in Great Britain

NOVEL VINYL KETONE - ACETYLENE CROSS-COUPLING CATALYZED BY RhCl(PMe)

Gennady I. Nikishin and Igor P. Kovalev *

N.D.Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, Leninsky Prospect 47, Moscow 117913, USSR

Abstract: RhCl(PMe₃)₃ is an effective catalyst of cross-coupling of vinyl ketones with terminal acetylenes to form γ, δ -acetylenic ketones.

We previously reported that $RhCl(PMe_3)_3$ is a selective catalyst of dimerization of vinyl ketones into 1,5-diketones ^{1,2} and 1-alkynes into conjugated enynes ³. Cross-condensation of terminal acetylenes with methyl 2,3-pentadienoate in the presence of palladium (II) compounds has been recently reported ⁴. In this paper we describe preliminary results of cross-coupling of vinyl ketones with terminal alkynes in the presence of the rhodium (I) trimethylphosphine complex.

Exposure of an equimolar mixture of vinyl ketone 1 and alkyne 2 in the presence of 1% mol RhCl(PMe₃)₃⁵ in acetone at room temperature gave γ, δ -acetylenic ketone 3 with high selectivity.

Typical procedure. 0.75 g (10.7 mmol) of methyl vinyl ketone (MVK) and 1.18 g (10.7 mmol) of 1-octyne were added to 0.047 g (0.107 mmol) of RhCl(PMe_3)₃ in 3 ml acetone under argon atmosphere. This mixture was stirred at room temperature for 48 h. Unconverted MVK, 1-octyne and solvent were removed in vacuo and distillation at c.a. 10^{-3} mm Hg gave 0.902 g of 5-dodecyn-2-one 3b⁶. Other alkynones were prepared similarly. Results are given in the Table. All synthesized compounds have been fully characterized by IR, ¹H, ¹³C NMR and mass-spectroscopy.

7063

R		Conversion, %		Product	Yield 3		
	R'=				*, to converted		mol/
		1	2		1	2	mol Rh
R = Me	R'= n-Pr	58	64	3a	95	86	55
Me	n-He	50	51	3b	92	90	47
Me ^b	Ph	31	34	3c	91	89	28
Me ^c	n-Bu	97	100	3d	94	91	91
cyclo- propyl	ь n-Bu	22	26	3e	92	87	20

Table. Synthesis of γ , δ -acetylenic ketones ^a

^a 10.7 mmol vinyl ketone, 10.7 mmol 1-alkyne, 0.107 mmol RhCl(PMe_3)₃, 3 ml acetone, room temperature, 48 h; ^b 96 h; ^c 108 h.

At higher temperature the rate of formation of 3 increases but selectivity of the reaction decreases due to a by-process of dehydrodimerization of alkynes. At 20⁰C dialkynes 4 are not practically formed.

$$2 R' = \frac{[RhCl(PMe_3)_3]}{acetone, 80°C, 5h} R' = R' (40-50%)$$

References and Notes

- M.G. Vinogradov, I.P. Kovalev and G.I. Nikishin, Izv. Akad. Nauk SSSR Ser. Khim., 1172 (1987).
- I.P. Kovalev, Yu.N. Kolmogorov, A.V. Ignatenko, M.G. Vinogradov and G.I. Nikishin, Izv. Akad. Nauk SSSR Ser. Khim., 1098 (1989).
- I.P. Kovalev, K.V. Yevdakov, Yu.A. Strelenko, M.G. Vinogradov and G.I. Nikishin, J. Organomet. Chem., 386, 139 (1990).
- 4. B.M. Trost and G. Kottirsch, J. Amer. Chem. Soc., 112, 2816 (1990).
- 5. R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse and K.M.A. Malic, J. Chem. Soc., Dalton Trans., 511 (1980).
- 6. 3b: b.p. $70-72^{\circ}C/20 \text{ mm Hg}$; ¹H NMR (CDCl₃) δ 0.89 (3H, t, J = 7 Hz), 1.25-1.40 (8H, m), 2.11 (2H, tt, J = 7; 2.25 Hz), 2.17 (3H, s), 2.40 (2H, m), 2.63 (2H, m); ¹³C NMR (CDCl₃) δ 13.33 (C-7), 13.88 (C-12), 18.53 (C-4), 22.42 (C-11), 28.37 (C-9), 28.81 (C-8), 29.71 (C-1), 31.22 (C-10), 42.86 (C-3), 78.25 (C-6), 80.75 (C-5), 206.86 (C-2); IR (neat): 2360 (C=C), 1722 (C=O); MS, m/z 180 (M⁺), 151, 122, 109, 95, 81, 67, 55, 43 (base).

(Received in UK 3 October 1990)