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Abstract—A new class of potent NK3R antagonists based on the N 0,2-diphenylquinoline-4-carbohydrazide core is described. In an
ex vivo assay in gerbil, the lead compound 2g occupies receptors within the CNS following oral dosing (Occ90 30 mg/kg po; plasma
Occ90 0.95 lM) and has good selectivity and promising PK properties.
� 2006 Elsevier Ltd. All rights reserved.
The mammalian tachykinins and their receptors have
been extensively studied,1 with the majority of drug dis-
covery work focused on substance P and its preferred
receptor NK1 and, to a lesser extent, the NKA/NK2R sys-
tem. However, attention has recently turned to NKB and
the NK3 receptor, which have now been implicated in a
range of conditions, including nociception, inflammation,
cough and schizophrenia.2 This paper describes our devel-
opment of a novel series of orally active non-peptide
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NK3R antagonists which are able to occupy receptors
within the CNS.
A number of non-peptide based hNK3R antagonists
have been reported, including a series based on quino-
line cores, of which Talnetant3 (1, hNK3R IC50

2.4 ± 0.8 nM)4 is a leading example. The SAR leading
to the (S)-N-(1-phenylpropyl)carboxamide group at
the 4-position of this series has been described.3 Howev-
er, the possibility that this group could be replaced by an
achiral phenylhydrazide (i.e., 2) has not previously been
considered.

Quinoline-4-carboxylic acids were easily prepared by
Pfitzinger reactions of appropriately substituted, com-
mercially available isatins with aryl ketones under either
acid or base catalysis (Scheme 1).6 Coupling to phen-
ylhydrazines could be carried out under a variety of pep-
tide coupling conditions. As expected, coupling occurs
exclusively to the more reactive hydrazine 2-nitrogen.
Compounds with electron-withdrawing acyl or carba-
mate groups on the hydrazine 1-nitrogen were easily
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Scheme 1. Reagents and conditions: (i) HCl–H2O (Concd), AcOH,

reflux; (ii) KOH, EtOH–H2O, reflux; (iii) PhN(R)NH2, EDC, HOBT,

Et3N; (iv) (COCl)2, DMF, CH2Cl2; (v) PhNHNH2, Et3N, CH2Cl2; (vi)

RCOCl, PhMe, reflux.
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prepared by first coupling the quinoline carboxylic acid
to phenylhydrazine followed by treatment with an
appropriate acyl chloride or chloroformate. This gave
acylation exclusively on the hydrazine 1-nitrogen pro-
vided the reaction was carried out under neutral condi-
tions (toluene, reflux); addition of base resulted in
variable amounts of a second, unwanted acylation of
the hydrazine 2-nitrogen (e.g., 3). An alternative ap-
proach was the preparation of 1,1-disubstituted hydra-
zine 4 and coupling to give the target molecules in a
single step (Scheme 2). In practice, 4 was less reactive
than phenyl(alkyl)hydrazines, resulting in poor yields
under mild peptide bond formation conditions, but reac-
tion occurred smoothly with preformed quinoline-4-car-
bonyl chlorides. An example of this approach was the
synthesis of the 3-hydroxyquinoline 2m via its O-ben-
zyl-protected analog.

Our initial studies focused on optimizing the hydrazide
N-substituent. With the quinoline C-3 substituent fixed
as methoxy, a series of analogs were prepared (Table
1, 2a–2i). We were gratified to find that these showed
promising hNK3R affinity, with considerable tolerance
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Scheme 2. Reagents and conditions: (i) PhCH2OCOCl, NaHCO3,

K2CO3, EtOAc, H2O, 0–5 �C; (ii) MeOCOCl, PhMe 100 �C; (iii) H2
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reflux; (vi) NaOH, MeOH, H2O; (vii) (COCl)2, DMF, CH2Cl2; (viii)

compound 4, Et3N, CH2Cl2.
for alkyl, aryl, and carbonyl containing N-substituents.
In particular, the introduction of a second phenyl group
gave very high affinity (2d, hNK3R IC50 0.85 nM). How-
ever, further exploration of this compound showed that
it had poor pharmacokinetic stability (incubation with
rat liver microsomes: 2d, 65% turnover after 15 min.)
which made it unattractive as a lead. It seemed possible
that this liability was a consequence of the two electron-
rich N-phenyl rings; indeed, replacing one ring with an
electron-withdrawing group improved metabolic stabili-
ty. In particular, carbomethoxy substitution gave an
optimal combination of good affinity and metabolic sta-
bility (2g, hNK3R IC50 8.8 nM; incubation with rat liver
microsomes: 21% turnover after 15 min.). Larger carba-
mate groups led to reductions in affinity (2h–2i).

With the hydrazine N-substituent fixed as carbome-
thoxy, we next explored the effect of the substituent at
C-3 (Table 1, 2j–2m). Groups at this position improved
affinity, but it is interesting to note that methoxy (2g),
methyl (2k), and amino (2l) were preferred over hydrox-
yl (2m) in this series, in contrast to the series which led to
Talnetant (1).3

The effect of aromatic substitution was next explored by
introduction of a single fluorine at all available positions
(Table 2). In many cases, this led to losses in affinity rel-
ative to the unsubstituted compound 2g, although fluo-
rination at the meta-position of the N-phenyl ring (4b)
or the quinoline 5-position (4g) was tolerated. Only fluo-
rination at the quinoline 8-position (4j) offered a mar-
ginal improvement in affinity, but introduction of
larger substituents (4k–4m) was not tolerated.

The ability of compounds to occupy NK3 receptors
within the CNS is critical for any potential drug for
the treatment of psychiatric conditions such as schizo-
phrenia. We therefore required an assay to assess this
property for our lead compounds. We decided to target
a biochemical (rather than behavioral) assay to directly
measure receptor occupancy. As with other NK recep-
tors, species differences in NK3R pharmacology make
rats or mice inappropriate for study.1 However, the ger-
bil NK3 receptor is close to the human receptor, show-
ing very similar antagonist affinities (e.g., 2g, NK3R
IC50s: human, 8.8 nM; gerbil, 4.5 nM; rat, 66 nM). We
surveyed a range of NK3R radioligands for a combina-
tion of affinity, low non-specific binding, and high brain
penetration but found none suitable for an in vivo bind-
ing assay. Instead, we developed an ex vivo binding as-
say in which occupancy of novel ligands was measured
in gerbil cortex and striatum using [3H]-senktide, a pep-
tidic agonist (derivatized fragment 6–11 of substance P)
as the radioligand. Routinely, compounds were dosed
orally and occupancy was measured 45 min. post dosing
with collection of plasma for drug level determination.8

In this assay, Talnetant (1) had an Occ90 dose of 75 mg/
kg po and a plasma Occ90 of 3.8 lM. Under the same
conditions, the high affinity antagonist 2d achieved
70% occupancy at 10 mg/kg po (plasma concentration
0.04 lM). This was an encouraging result as it demon-
strated that compounds in this class were active in vivo.
However, while the low plasma exposure needed for



Table 1.

N

R'

NHO

N
R

Compound R R 0 hNK3 IC50
a

(nM)

hPXR Responseb

(%Rif. at 10 lM)

1 Talnetant 2.4 ± 0.8 62

2a H OMe 32 ± 4

2b Me OMe 57 ± 2

2c Et OMe 16 ± 7

2d Ph OMe 0.85 ± 0.24 68

2e COMe OMe 210 ± 25

2f COEt OMe 22 ± 3

2g CO2Me OMe 8.8 ± 5.1 49

2h CO2Et OMe 60 ± 22

2i CO2iBu OMe 190 ± 20

2j CO2Me H 91 ± 18 44

2k CO2Me Me 8.4 ± 0.4 56

2l CO2Me NH2 10 ± 2 64

2m CO2Me OH 39 ± 4

a Displacement of [125I] labeled neurokinin B from the cloned hNK3

receptor expressed in CHO cells. Data are means ± SD (n = 3 or

more).4

b Increase in hPXR activation in HepG2 cells transiently transfected

with hPXR (% of 10 lM rifampicin positive control).7
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occupancy was a reflection of very good affinity and
availability to the receptor, the dose required was indic-
ative of the problems of poor metabolic stability and
Table 2.

N
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F

F

2'

3'
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5
6

7
8

’ Compound Substitution

4a 2 0-F
4b 3 0-F
4c 4 0-F
4d 200-F
4e 300-F
4f 400-F
4g 5-F

4h 6-F

4i 7-F

4j 8-F

4k 8-Br

4l 8-CN

4m 8-CF3

a Displacement of [125I] labeled neurokinin B from the cloned hNK3 recepto
b Increase in hPXR activation in HepG2 cells transiently transfected with hP
hence bioavailability for 2d. A more interesting lead
was the less labile carbamate 2g which was orally active
with an Occ90 of 30 mg/kg po and a plasma Occ90 of
0.95 lM.

In addition to good stability in vitro in microsomal incu-
bations, 2g had promising PK properties (rat: F, 43%;
t1/2, 4.6 h; dog: F, 36%; t1/2, 3 h). We felt it was impor-
tant to verify at an early stage that the presence of an
acylated hydrazide in 2g did not lead to the formation
of potentially toxic hydrazine metabolites. Both in vitro
and in vivo we found no evidence of oxidation or cleav-
age of the hydrazine N–N bond, or release of a hydra-
zine. Moreover, Ames testing9 of 2g was negative in
both the presence and absence of liver microsomal
enzymes.

Cellular functional NK3R antagonist activity of 2g was
measured in inositol phosphate generation studies using
CHO/hNK3R cells in response to eledoisin or senktide
stimulation.10 Eledoisin caused a concentration-depen-
dent increase in inositol phosphate generation in these
cells with an EC50 of 5.7 ± 0.1 nM (n = 2). In a Schild
analysis of its antagonist behavior, 2g caused a concen-
tration-dependent rightward shift in the EC50 of eledoi-
sin with no diminution of the maximal agonist response
(Kb of 11 nM, slope of 1.0), indicative of competitive
antagonism. When titrated versus an approximate
EC50 concentration (3 nM) of senktide, 2g inhibited ino-
sitol phosphate generation with an IC50 of 28 ± 6 nM
(n = 2). Similarly, 2g (2.8 lM) was able to completely
block senktide-induced (30 nM) Ca2+ mobilization in
CHO/hNK3R cells. Compound 2g demonstrated no
measurable agonist activity for inositol phosphate
OMe

CO2Me

F

2''
3''

4''

hNK3 IC50
a (nM) hPXR Responseb

(%Rif. at 10 lM)

53 ± 26 —

7.4 ± 4.8 54

33 ± 33 —

110 ± 48 —

22 ± 6 69

24 ± 5 54

11 ± 3 55

38 ± 4 62

28 ± 5 62

4.1 ± 0.3 75

430 ± 93 88

35% ± 11% inh. at 1 lM 87

27% ± 15% inh. at 1 lM 87

r expressed in CHO cells. Data are means ± SD (n = 3 or more).4

XR (% of 10 lM rifampicin positive control).7
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generation or Ca2+ mobilization at concentrations up to
10 lM.

Further profiling of 2g showed that it had good selectiv-
ity over hNK1R and hNK2R (IC50s >1 lM) as well as a
panel of other receptors and ion channels, including the
hERG ion channel (Ki > 8 lM), blockade of which can
lead to QT interval prolongation and severe side effects.
2g showed low levels of CYP450 inhibition (human liver
microsomes, IC50s: 2C9, 2D6, >30 lM; 3A4, 12 lM),
but caused CYP3A4 induction in human hepatocytes
at high concentrations (77% of positive control at
20 lM),13 suggesting a risk for drug–drug interactions.
A key step in the main pathway for CYP3A4 induction
is activation of the hPXR nuclear receptor;7 2g was
found to activate hPXR in vitro (HepG2 cells transient-
ly transfected with hPXR; 49% of 10 lM rifampicin po-
sitive control). The substitutions reported here were
shown to have no effect on this activation (Tables 1
and 2); this was a critical issue which required
resolution.

In summary, we have shown that 2-phenyl quinolines
substituted at C-4 with a phenylhydrazide are potent
hNK3R antagonists which are capable of occupying
receptors within the CNS following oral dosing. The
lead compound 2g showed good selectivity and promis-
ing PK properties. The further development of this ser-
ies to improve the in vivo profile while addressing the
remaining issues of CYP induction and weak CYP3A4
inhibition will be reported in the following paper.
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