Original Russian Text Copyright © 2001 by Bratenko, Chornous, Vovk.

4-Functionally Substituted 3-Heterylpyrazoles: III.* 3-Aryl(heteryl)pyrazole-4-carboxylic Acids and Their Derivatives

M. K. Bratenko¹, V. A. Chornous¹, and M. V. Vovk²

¹Bukovinskaya State Medical Academy Chernovtsy, 58000 Ukraine ²Institute of Organic Chemistry, Ukrainian Academy of Sciences, Kiev, 02094 Ukraine

Received March 16, 1999

Abstract—3-Aryl(heteryl)-4-formylpyrazoles were cleanly oxidized by potassium permanganate in water-pyridine medium to afford in high yield 3-aryl(heteryl)pyrazole-4-carboxylic acids, that were further converted into the corresponding chlorides and amides.

In the series of functionally substituted pyrazoles are important 4-pyrazolecarboxylic acids. On their capability to decarboxylate at elevated temperature is based an extensively used preparation method for pyrazoles unsubstituted in 4 position [2-4]. Besides some derivatives of 4-pyrazolecarboxylic acids, e.g. amides, possess pronounced farmaceutical activity [5, 6]. The main described method of preparation for 4-pyrazolecarboxylic acids is the alkaline hydrolysis of the corresponding esters [4, 7, 8] or acid hydrolysis of their amides [2]. The oxidation of 4-pyrazolecarbaldehydes apart from singular examples [3, 9] up till now have not found application in the synthesis of the pyrazole-substituted carboxylic acids. Yet for preparation of 1,3-disubstituted 4-pyrazolecarboxylic acids oxidation of the corresponding aldehydes can be a promising approach taking into account the preparative accessibility of the latter [10-14]. The oxidation with potassium permanganate was studied by an example of 3-aryl(heteryl)-1-phenyl-4-formylpyrazoles Ia-h.

We found that aldehydes **Ia-h** treated with potassium permanganate in 50% aqueous pyridine at 18–20°C afford 4-pyrazolecarboxylic acids in high yield (71–94%) (see the Scheme).

Acids **II** (Table 1) are high-melting colorless or light yellow substances. Their structure was confirmed by ¹H NMR and IR spectra. In particular, the presence in their IR spectra recorded from solid samples of characteristic wide absorption bands in the 2500–3100 cm⁻¹ region corresponds to OH groups participating in hydrogen bonds, together with the absorption bands of the stretching vibrations of C=O groups in 1700–1710 cm⁻¹ region

Scheme.

I, II, $R^1 = Ph$ (a), 4-FC_6H_4 (b), 4-ClC_6H_4 (c), 4-BrC_6H_4 (d), 4-EtC_6H_4 (e), 4-PhC_6H_4 (f), 3-pyridyl (g), 2-thienyl (h); III, $R^1 = Ph$ (a), 4-FC_6H_4 (b), 4-ClC_6H_4 (c), 4-BrC_6H_4 (d), 4-EtC_6H_4 (e), 2-thienyl (f); IV, $R^1 = Ph$, $R^2 = H$, $R^3 = 3\text{-Et}_2NSO_2C_6H_4$ (a); R^2 , $R^3 = 1\text{-CH}_2\text{-}2\text{-C}_2H_4C_6H_4$ (b); $R^1 = 4\text{-FC}_6H_4$, $R^2 = H$, $R^3 = 3,5\text{-Cl}_2C_6H_3$ (c); R^2 , $R^3 = 2,2^1\text{-C}_6H_4CH_2CH_2C_6H_4$ (d); $R^1 = 4\text{-ClC}_6H_4$, $R^2 = H$, $R^3 = 2\text{-tetrahydrofurylmethyl}$ (g); R^2 , $R^3 = (CH_2CH_2)_2NPh$ (f); $R^1 = 2\text{-thienyl}$, $R^2 = H$, $R^3 = 3\text{-morpholinosulfonylphenyl}$ (g); R^2 , $R^3 = 2,2^1\text{-C}_6H_4CH_2CH_2C_6H_4$ (h).

evidences the dimeric character of the acids synthesized [15]. In the ¹H NMR spectra the protons of aromatic and heteroaromatic substituents in positions 1 and 3 of the pyrazole ring are clearly seen as sets of multiplet signals in the region 7.17–8.35 ppm, and the singlet of the proton in position 5 (8.85–9.08 ppm) is shifted downfield by about 0.5 ppm compared to the corresponding singlet in the spectra of 4-formyl-pyrazoles [14].

Compd. no.	Yield,	mp, °C	IR spec	etrum, cm ⁻¹	III NIMD on activities S. maria	
			v(C=O)	ν(OH)	¹ H NMR spectrum, δ, ppm ^a	
IIa	94	204-205 ^b	1710	2550-3050	7.21–7.65 m (10H, H arom), 8.87 s (1H, C ⁵ H)	
IIb	89	229-230	1705	2600-3000	7.40-8.03 m (9H, H arom), 8.96 s (1H, C ⁵ H)	
IIc	86	240-242	1710	2600-3100	7.30-7.71 m (9H, H arom), 9.03 s (1H, C ⁵ H)	
IId	90	249-250	1705	2600-3000	7.34–7.78 m (9H, H arom), 8.85 s (1H, C ⁵ H)	
IIe	82	200-202	1700	2500-3100	1.30 t (3H, CH ₃), 2.55 q (2H, CH ₂), 7.18–7.59 m	
					(9H, H arom), 8.94 s (1H, C ⁵ H)	
IIf	74	198-199	1710	2550-3050	7.28–7.84 m (14H, H arom), 8.88 s (1H, C^5H)	
IIg	84	236-238	1710	2600-3000	7.39–8.35 m (9H, H arom), 8.93 s (1H, C ⁵ H)	
IIh	71	180-171	1700	2600-3050	7.17-8.12 m (8H, H arom), 9.08 s (1H, C ⁵ H)	

Table 1. Yields, melting points, IR and ¹H NMR spectra, and elemental analyses of 4-pyrazolecarboxylic acids IIa-h

Committee of	Found, %			Farmula	Calculated, %		
Compd. no.	С	Н	N	Formula	С	Н	N
IIa	73.09	4.80	10.50	C ₁₆ H ₁₂ N ₂ O ₂	72.71	4.55	10.61
IIb	67.65	4.07	9.30	C ₁₆ H ₁₁ FN ₂ O ₂	68.09	3.90	9.43
IIc	64.61	3.89	9.63	C ₁₆ H ₁₁ ClN ₂ O ₂	64.32	3.69	9.40
IId	56.33	3.03	8.42	C ₁₆ H ₁₁ BrN ₂ O ₂	55.98	3.21	8.16
IIe	73.54	5.67	10.00	C ₁₈ H ₁₆ N ₂ O ₂	73.95	5.51	9.58
IIf	77.42	4.97	8.07	C ₂₂ H ₁₆ N ₂ O ₂	77.63	4.74	8.23
IIg	67.66	4.49	15.67	$C_{15}H_{11}N_3O_2 \\ C_{14}H_{10}N_2O_2S$	67.93	4.18	15.84
IIh	62.52	3.99	10.19		62.21	3.73	10.36

^a The protons of COOH group and of water present in the solvent due to fast exchange appear as a broad signal in the region 3.30-3.50 ppm.

In order to obtain new derivatives of 4-pyrazole-carboxylic acids, in particular, those possessing biological activity, we converted compounds **Ha-e**, **h** by treating with thionyl chloride into 4-pyrazolecarbonyl chlorides **HIa-f** in close to quantitative yield. The constants of compounds **HIa-f** are listed in Table 2.

We established that 4-pyrazolecarbonyl chlorides **IIIa-c**, **f** were less reactive than typical aroyl chlorides, and they acylate primary and secondary aliphatic and aromatic amines by heating in toluene for 3 h affording amides **IVa-h** (Table 3).

EXPERIMENTAL

IR spectra were recorded on spectrometer UR-20 from KBr pellets. $^1\mathrm{H}$ NMR spectra were registered in DMSO- d_6 solutions on spectrometer Varian-Gemini (300 MHz), internal reference TMS.

Aldehydes used in the study were synthesized by the following methods: **Ia**, **b**, **d**-**f** [13], **Ic** [12], **Ig** [16]. **Ih** [14].

1-Phenyl-3-(4-ethylphenyl)-4-pyrazolecarbaldehyde Ie was obtained by a procedure from [13]. Yield 78%, mp 113-115°C (from ethanol). IR spectrum, v, cm⁻¹: 1700 [v(C=O)]. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.13 t (3H, CH₃), 3.12 q (2H, CH₂), 7.25-7.74 m (9H, H arom), 8.56 s (1H, C⁵H), 10.05 s (1H, HC=O). Found, %: C 77.93; H 5.63; N 10.03. C₁₈H₁₆N₂O. Calculated, %: C 78.26; H 5.79; N 10.14.

3-Aryl(heteryl)-1-phenylpyrazole-4-carboxylic acids IIa-h. To a suspension of 0.05 mol of aldehyde Ia-h in 50 ml of 50% aqueous pyridine at stirring and cooling with tap water was added within 1 h by small portions 7.9 g (0.05 mol) of potassium permanganate maintaining the temperature of the reaction mixture at 20–22°C. The mixture was stirred till the violet color disappeared, the manganese dioxide precipitate was filtered off, washed with 5% water solution of sodium hydroxide, and to the filtrate was added diluted hydrochloric acid. The separated pre-

b mp 206°C [2].

Compd.	Yield,	mp, °C	Found, %		Formula	Calculated, %	
no.			Cl	N	Formula	Cl	N
IIIa	95	99-100	12.74	10.20	C ₁₆ H ₁₁ ClN ₂ O	12.56	9.91
IIIb	90	140-141	11.96	9.04	$C_{16}H_{10}CIFN_2O$	11.79	9.32
IIIc	88	124-125	22.51	8.88	$C_{16}H_{10}Cl_2N_2O$	22.36	8.83
IIId	91	126-127	32.14 ^a	8.03	$C_{16}H_{11}BrClN_2O$	31.90^{a}	7.75
IIIe	81	184-188 ^b	11.09	9.36	$C_{18}H_{15}ClN_2O$	11.41	9.02
IIIf	85	162–164	12.68	10.49	$C_{14}H_9CIN_2OS$	13.00	10.27

Table 2. Yields, melting points, and elemental analyses of 4-pyrazolecarbonyl chlorides IIIa-f

Table 3. Yields, melting points, ¹H NMR spectra, and elemental analyses of 4-pyrazolecarboxamides IVa-h

Compd. no.	Yield, %	mp, °C	¹H NMR spectrum, δ, ppm
IVa	69	200	1.06 t (6H, CH ₃), 3.17 q (4H, CH ₂), 7.42–8.18 m (14H, H arom), 9.14 s (1H, C ⁵ H), 0.47 s (1H, NH)
IVb	68	121	2.61–2.87 m (2H, CH ₂), 3.54–3.95 m (2H, CH ₂), 4.62–4.81 m (2H, CH ₂), 7.16–7.97 m (14H, H arom), 8.84 s (1H, C ⁵ H)
IVc	80	183-184	7.27-7.92 m (12H, H arom), 9.13 s (1H, C ⁵ H), 9.71 s (1H, NH)
IVd	75	234	2.90 m (2H, CH ₂), 3.33 m (2H, CH ₂), 7.25–7.86 m (17H, H arom), 8.27 s (1H, C ⁵ H)
IVe	71	139	1.57-1.82 m (6H, CH ₂), 3.65-3.96 m (3H, CH, CH ₂), 7.36-7.89 m (9H, H arom), 8.23 s (1H, NH), 8.93 s (1H, C ⁵ H)
IVf	68	159-160	2.95-3.97 m (8H, CH ₂), $6.80-7.96$ m (14H, H arom), 8.85 s (1H, C ⁵ H)
IVg	82	188	2.92 m (4H, CH ₂), 3.65 m (4H, CH ₂), 7.14–8.15 m (12H, H arom), 9.17 s (1H, C ⁵ H), 10.52 s (1H, NH)
IVh	78	204-205	2.83 m (2H, CH ₂), 3.64 m (2H, CH ₂), 8.21 s (1H, C^5 H), 7.21–7.77 m (16H, H arom)

Compd. no.		Found, %		Formula	Calculated, %		
	С	Н	N	Formula	С	Н	N
IVa	66.02	5.59	11.63	$C_{26}H_{26}N_4O_3S \ C_{25}H_{21}N_3O$	65.82	5.49	11.81
IVb	80.01	5.50	10.80		79.15	5.54	11.08
IVc	62.20	3.49	9.64	$C_{22}H_{14}Cl_{2}FN_{3}O \ C_{30}H_{22}FN_{3}O$	61.97	3.29	9.86
IVd	78.60	5.05	8.90		78.43	4.79	9.15
IVe	66.30	4.73	10.50	$C_{21}H_{20}CIN_3O_2 C_{26}H_{23}CIN_4O$	66.05	5.28	11.00
IVf	70.80	5.35	12.78		70.51	5.20	12.66
IVg	58.55	4.70	11.50	$C_{24}H_{22}N_4O_4S_2 C_{28}H_{21}N_3OS$	58.30	4.45	11.34
IVh	75.50	5.15	9.11		75.17	4.70	9.39

cipitate of the 4-pyrazolecarboxylic acid was filtered off, dried, and recrystallized from glacial acetic acid.

3-Aryl(heteryl)-1-phenylpyrazole-4carbonyl chlorides IIIa-f. To a suspension of 0.002 mol of acid **IIa-e**, h in 15 ml of anhydrous toluene was added 0.05 mol of thionyl chloride, 3-4 drops of dimethylformamide, and the mixture was boiled for 2 h. Then the excess thionyl chloride and solvent

were distilled off, the residue was washed with hexane and crystallized from a mixture benzene-hexane, 3:1.

3-Aryl(heteryl)-1-phenylpyrazole-4-carboxamides IVa-h. To a solution of 0.0025 mol of chloride **IIIa-c, f** in 10 ml of toluene was added at stirring 0.0025 mol of amine and 0.4 ml of triethylamine. The mixture was heated to boiling for 3 h and

^a Overall content of Cl and Br. ^b bp at 0.02 mm Hg.

left standing at room temperature for 12 h. The solvent was evaporated, the residue was treated with water, filtered, dried, and crystallized from an appropriate solvent.

REFERENCES

- Bratenko, M.K., Vovk, M.V., Chornous, V.A., and Mel'nichenko N.V., *Zh. Org. Khim.*, 1999, vol. 35, no. 12, pp. 1849–1851.
- 2. Dains, F.B. and Long, W.S., *J. Am. Chem. Soc.*, 1921, vol. 43, no. 6, pp. 1200–1202.
- 3. Kira, M.A., Nofal, Z.M., and Gadolla, K.Z., *Tetrahedron Lett.*, 1970, vol. 11, no. 48, pp. 4215–4217.
- 4. Menozzi, G., Mosti, L., and Schenove, P., *J. Heterocyclic Chem.*, 1987, vol. 24, no. 6, pp. 1669–1675.
- Zagorevskii, V.A., Vlasova, N.V., Zykov, D.A., and Kirsanova, Z.D., *Khim.-Farm. Zh.*, 1989, vol. 23, no. 8, pp. 966–971.
- Morozov, I.S., Klimova, N.V., Bykov, N.B., Zaitseva, N.M., Pushkar', G.V., Dvalishvili, E.D., Khranilov, A.A., and Pyatin, B.M., Khim.-Farm. Zh., 1991, vol. 25, no. 3, pp. 29–31.

- 7. Auwers, K.V., Mauss, H., *Chem. Ber.*, 1926, vol. 59, pp. 611–624.
- 8. Bischoff, C. and Platz, K.H., *J. Prakt. Chem.*, 1970, vol. 312, pp. 2-9.
- 9. Collins, P.M., Gardiner, D., Kumar, S., and Overend, W.G., *J. Chem. Soc.*, *Perkin Trans. I*, 1972, no. 20, pp. 2611–2618.
- 10. Kira, M.A., Abdel-Enein, M.O., and Gadolla, K.Z., *Tetrahedron Lett.*, 1969, vol. 10, no. 2, pp. 109–110.
- 11. Kira, M.A., Abdel-Enein, M.O., and Korkor, M.I., J. Heterocyclic Chem., 1970, vol. 7, no. 1, pp. 25–26.
- 12. Rainer, G., Krueger, U., and Klemm, K., *Arzneim. Forsch.*, 1981, vol. 31, no. 4, pp. 649–655.
- 13. Bernard, M., Hulley, E., Molenda, J., Stochla, K., and Wrzeciono, U., *Pharmazie*, 1986, vol. 41, no. 8, pp. 560–561.
- 14. Bratenko, M.K., Chernyuk, I.N., and Vovk, M.V., *Zh. Org. Khim.*, 1997, vol. 33, no. 9, pp. 1368–1370.
- 15. Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Pergamon Press, 1979. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1983, vol. 5.
- 16. USA Patent 4146721, 1979; *Chem. Abstr.*, 1979, vol. 91, 20496y.