Microwave Spectrum, r_s Structure, and Internal Rotation of Methyl Fluorogermane

MICHIRO HAYASHI, SHOJI KAMINAKA, MASAHARU FUJITAKE, AND SONOKO MIYAZAKI

Department of Chemistry, Faculty of Science, Hiroshima University, Higashi-sendamachi, Naka-ku, Hiroshima 730, Japan

The microwave spectra of methyl fluorogermane and its 17 isotopic species were measured. The rotational, centrifugal distortion constants and the quantities related to the methyl internal rotation were simultaneously determined for the species having CH_3 and CD_3 groups. Quade-type analysis for the splittings of the spectra were carried out for CH_2DGeH_2F . From the observed moments of inertia, the r_s structure was well established. Discussions on the molecular structures were presented by comparing with the results of the analogous molecules. Especially, the angle relation of the GeH₂ group and the tilt angle of the methyl group were considered. © 1989 Academic Press, Inc.

INTRODUCTION

The microwave spectra and molecular structure of methyl fluorogermane have been reported by Roberts *et al.* (1) and Krisher *et al.* (2). Roberts *et al.* concluded that the methyl group of this molecule tilts toward the fluorine atom by about 2° from the analysis of the A-E splittings of the spectra due to the methyl internal rotation.

Their paper called our attention since the direction of the tilt for methyl fluorogermane is opposite to the directions of the tilted methyl groups of molecules studied so far.

Then, one of the present authors had worked carefully on the microwave spectra and molecular structure of methyl fluorosilane which is considered to be an appropriate reference for methyl fluorogermane.

For methyl fluorosilane (3), it was noted that the directions of the methyl top axis obtained from the r_s structure and from the A-E splitting analysis do not coincide with each other. The direction of the tilt from the r_s structure inclines by 1°45' from the direction of the CSi bond toward two hydrogen atoms attached to the silicon atom, while the direction obtained from the A-E splitting analysis inclines by 47' toward the fluorine atom in a similar manner as the reported direction for methyl fluorogermane.

However, we could not conclude whether this fact has any physical meaning or not due to ambiguity in the r_s structure and the degree of approximation in the internal rotation analysis of the A-E splittings by the principal axis method.

The present investigation of the microwave spectra of methyl fluorogermane was carried out in order to reexamine the conclusions given by Roberts *et al.* and to compare the results with those of methyl fluorosilane when the procedures used for

the analyses of the spectra of the present molecule were similar to those applied for methyl fluorosilane.

The measurements of the spectra were extended to the isotopically substituted species which were not measured by Roberts *et al.*

The A-E splittings of the observed spectra due to the methyl internal rotation were actually large; that is, some of the *b*-type transitions of the normal species are more than 30 MHz. Furthermore, for the $a-CH_2DGeH_2F$ species, large splittings of the spectra were also found.

In order to determine the r_s structure, the rotational constants of all the isotopic species used should be obtained in the unperturbed state from the methyl and CH₂D type internal rotation.

For the CH₃ and CD₃ species, the A-E splittings of the spectra were easily predicted by the standard PAM-bootstrap analysis. On the other hand, the CH₂D type internal rotation splittings were predicted by the method proposed by Quade *et al.* (4).

The r_s structure was established and compared with that for methyl fluorosilane.

EXPERIMENTAL DETAILS

The samples of the normal and CH_3GeD_2F species used for the measurements were prepared from commercial methyl trichlorogermane by the following successive reactions: (i) methyl trichlorogermane was reduced by lithium aluminum hydride or deuteride in dibutyl ether, (ii) the resulting methyl germane or CH_3GeD_3 was reacted with bromine at liquid nitrogen temperature, and (iii) methyl bromogermane or CH_3GeD_2Br obtained was converted to methyl fluorogermane or CH_3GeD_2F by reacting with PbF₂ at room temperature.

The samples of ¹³CH₃GeH₂F, CD₃GeH₂F, and CH₂DGeH₂F, species were prepared from the appropriate isotopic species of methyl germane by the above reactions (ii) and (iii). The isotopic species of methyl germane were prepared from bromogermane or deuterated bromogermane and appropriate isotopic methyl Grignard reagent in dibutyl ether. Bromogermane or deuterated bromogermane was obtained by reducing tetrachlorogermane with sodium borohydride in water or with LiAlD₄ in dibutyl ether and germane obtained was reacted with bromine.

A conventional 100 kHz Stark modulation spectrometer was used for the measurements of the spectra at dry-ice temperature.

MICROWAVE SPECTRA

Methyl fluorogermane is a prolate asymmetric top molecule ($\kappa = -0.63$) with nonzero dipole moment components, μ_a and μ_b . Strong *a*-type transitions and weak *b*type transitions are expected since μ_a is about 2.5 times larger than μ_b . Doublet structures are found for all the transitions of the isotopic species having the CH₃ group, while for isotopic species having the CD₃ group, *a*-type transitions are usually singlets and *b*-type transitions exhibit doublet structures. Singlets are found for the *s*-CH₂DGeH₂F species whose deuterium atom in the methyl group is situated in the molecular plane, while doublets are found for the *a*-CH₂DGeH₂F species whose deuterium atom is situated out of the molecular plane. About 30 *a*- and *b*-type transitions with $J \le 8$ and $K_a \le 2$ were measured for all the species. The A-E splittings of some of the transitions were found to be more than 30 MHz.

The computer program used for the analysis was described in the previous paper (5) and could determine simultaneously the unperturbed rotational constants, quartic centrifugal distortion constants, and the quantities related to the methyl internal rotation from the observed frequencies for each of the CH₃ and CD₃ species.

For methyl fluorogermane, all the five quartic centrifugal distortion terms expressed in the Watson-A reduction (6) were found to be necessary to fit the observed frequencies. For the methyl internal rotation analysis, the standard PAM-bootstrap formula was used where the barrier V_3 , the direction cosines of the methyl top axis and the moment of inertia of the methyl top around the top axis I_{α} were taken to be variables.

For the s-CH₂DGeH₂F and a-CH₂DGeH₂F species, the method proposed by Quade *et al.* was applied.

Observed frequencies are given in Tables I, II, and III.

ANALYSIS OF SPECTRA

For the isotopic species having CH₃ or CD₃ group, the first calculation was carried by regarding as variables all the parameters—rotational constants, five centrifugal distortion constants, barrier height V_3 , one of direction cosines λ_a of the methyl top axis, and the top moment of inertia I_{α} .

As already reported in the previous paper on dimethyl silane and dimethyl sulfide (5), the top moment of inertia I_{α} is usually difficult to be determined from the A-E splitting analysis.

However, for methyl fluorogermane, I_{α} could be determined for the normal, CH₃GeD₂F, and ¹³CH₃GeH₂F species. Though the error limits of the I_{α} values were large, the error limits were much smaller than the values determined for the other molecules. In order to reduce the influence of ambiguity of the I_{α} values, the I_{α} with the smallest error limit among the three Ge isotopic species was chosen for the normal, CH₃GeD₂F, and ¹³CH₃GeH₂F species and the calculations were repeated as the I_{α} was fixed.

For CD₃GeH₂F species, reasonable I_{α} values could not be obtained and we used the value converted from that of the normal species. The results are listed in Table IVa.

The following procedures of the analysis were carried out for the isotopic species having CH_2D group. The spectra of the *s*- CH_2DGeH_2F species exhibit only singlets and they could be predicted well by the usual modified rigid rotor formula which contained five centrifugal distortion terms in the Watson-A reduction expression. Results are listed in Table IVb.

The spectra of the a-CH₂DGeH₂F species exhibit mainly doublets due to the tunnelling effect between two equivalent forms which produces the + and - states.

Since the observed transitions are *a*- and *b*-types, they are the transitions allowed under the selection rule $+\leftrightarrow+$ and $-\leftrightarrow-$. In order to obtain approximate unperturbed rotational constants of the *a*-CH₂DGeH₂F species, the averages of the corresponding

HAYASHI ET AL.

TABLE Ia

Observed Frequencies of Methyl Fluorogermane (MHz)*

Transition		CH-CoN+F			CH3GeD2F	
J'Ka'Kc' + J"Ka"Kc'	⁷⁴ Ge	CH ₃ GeH ₂ F ⁷² Ge	⁷⁰ Ge	⁷⁴ Ge	⁷² Ge	⁷⁰ Ge
1 ₀₁ - 0 ₀₀	10877.57(-1)	10886.96(3)	10896.77(1)	10521.50(-5)	10529.36(-3)	10537.47 (-5)
	10876.36(15)	10885.65(9)	10895.38(-1)	10520.47(13)	10528.34(-16)	10536.42 (10)
2 ₀₂ - 1 ₀₁	21506.26(-11)	21530.14(-6)	21555.03(0)	20779.60(-9)	20799.95(-6)	20821.04(-3)
	21503.85(8)	21527.70(10)	21552.48(6)	20777.40(4)	20797.73(-4)	20818.83(0)
2 ₁₂ - 1 ₁₁	20127.59(-8)	20155.79(-5)	20185.27(-2)	19547.24(-7)	19570.80(-6)	19595.30(-3)
	20129.43(3)	20157.71(5)	20187.17(5)	19548.66(7)	19572.22(9)	19596.74(15)
2 ₁₁ - 1 ₁₀	23382.46(-10)	23391.84(-4)	23401.70(1)	22538.65(-9)	22546.53(-3)	22554.62(-5)
	23375.95(11)	23385.11(2)	23394.86(-1)	22533.15(3)	22540.88(-7)	22548.91(-16)
3 ₀₃ - 2 ₀₂	31673.81(-8)	31720.68(-4)	31769.14(-5)	30560.91(-5)	30601.20(-4)	30642.58(-4)
	31670.35(6)	31717.18(6)	31765.66(8)	30557.97(6)	30598.04(2)	30639.63(4)
3 ₁₃ - 2 ₁₂	30046.09(-4)	30091.26(-6)	30138.28(-5)	29168.44(0)	29206.30(-3)	29245.71(-3)
	30045.15(16)	30090.34(14)	30137.37(17)	29167.56(16)	29205.47(19)	29244.82(12)
3 ₁₂ - 2 ₁₁	34904.01(~8)	34921.79(-5)	34940.46(-7)	33625.81(-1)	33640.98(-2)	33656.72(-3)
	34897.79(8)	34915.67(23)	34933.95(13)	33620.38(9)	33635.48(-1)	33651.25(-1)
3 ₂₂ - 2 ₂₁	32632.81(-3)	32660.99(-7)	32690.46(2)	31654.56(-1)	31588.07(-4)	31612.56(-2)
3 ₂₁ - 2 ₂₀	33590.89(-9)	33600.51(-6)	33610.76(-9)	32657.54(-3)	32574.50(-3)	32581.96(-2)
3 ₁₂ - 3 ₁₃	9740.40(4)	9684.70(8)	9626.61(5)	8944.58(0)	8898.31(3)	8850.10(3)
	9734.68(2)	9679.00(3)	9620.90(2)	8939.45(-3)	8893.17(-1)	8844.95(-3)
4 ₁₃ - 4 ₁₄	16107.08(6)	16018.57(5)	15926.22(6)	14753.35(-1)	14680.75(0)	14605.03(6)
	16095.68(7)	16007.14(-2)	15914.84(10)	14743.25(-3)	14670.60(-9)	14595.88(-6)
5 ₁₄ - 5 ₁₅	23761.49(0)	23652.09(-1)	32517.06(6)	21651.42(-1)	21556.05(4)	21455.98(3)
	23743.35(2)	23623.94(-5)	23498.90(6)	21635.45(-3)	21540.15(4)	21440.16(7)
6 ₁₅ - 6 ₁₆	32321.69(-2)	32183.92(-3)	32038.60(2)	29210.33(2)	29104.81(3)	28993.14(1)
	32295.70(-5)	32158.00(-3)	32012.57(-4)	29187.61(-4)	29082.12(-9)	28970.48(-18)
6 ₂₄ - 6 ₂₅	12760.34(-1)	12577.35(6)	12387.76(3)	12675.90(3)	12526.89(2)	12372.50(4)
	12758.15(-7)	12575.39(-5)	12385.73(-11)	12672.51(5)	12523.50(4)	12369.11(6)
7 ₂₅ - 7 ₂₆	19925.06(-8)	19675.43(4)	19415.80(3)	19442.87(2)	19245.25(-2)	19039.78 (2)
	19916.75(-9)	19667.34(-4)	19407.67(-8)	19433.77(-6)	19236.16(-9)	19030.70 (-8)
8 ₂₆ - 8 ₂₇	28462.47 (2) 28448.09 (4)	28155.74(-4) 28140.69(-2) 10672.99(5)	27834.54(-9) 27819.61(13)	27299.09(-1) 27283.44(-12)	27064.41(-3) 27048.94(-2)	26819.05 (-2) 26803.58 (-8)
2 ₁₁ - 2 ₀₂	10618.32(12) 10608.17(0) 13848.51(12)	10662.68(-9)	10730.61(5) 10720.30(-7)	8815.41(2) 8807.95(7) 11880.29(4)	8846.56(6) 8839.07(8)	8879.45(5) 8871.87(-3)
3 ₁₂ - 3 ₀₃	13835.40(~18)	13874.16(11) 13861.02(-8)	13091.69(7)	11870.27(1)	11996.50(6) 11876.49(3)	11893.60(7) 11882.50(-6)
4 ₁₃ - 4 ₀₄	18728.05(11)	18709.53(6)	18691.26(7)	16501.52(3)	16471.73(6)	16441.33(7)
	18711.45(-11)	18692.93(-3)	18674.52(-9)	16488.25(5)	16348.28(-11)	16427.84(-16)
5 ₁₄ - 5 ₀₅	25277.67(12) 25256.17(-6)	25210.40(4) 25188.80(-16)	25141.00(8) 25119.29(-14)	22589.33(4) 22571.45(-1) 29677.61(3)	22523.63(9) 22505.67(-7)	22455.23(6) 22437.35(-6)
6 ₁₅ ~ 6 ₀₆	33136.70(5) 33108.84(-13) 28811.58(-4)	33033.48(4) 33005.84(15) 29002.15(-2)	32925.30(4) 32897.17(-17)	29653.88(-8)	29590.26(4) 29566.67(-10)	29398.15(3)
3 ₂₂ - 3 ₁₃	28756.06(4)	28945.12(-3)	29202.41(-10) 29145.00(1) 32649.68(1)	23564.55(1)	23681.15(4)	23803.37(8)
4 ₂₃ - 4 ₁₄	32305.36(-6)	32473.04(-8)	32649.68(1)	26799.37(1)	26896.79(1)	26999.04(7)
	32262.33(14)	32429.20(13)	32605.50(12)	26766.93(9)	26864.45(19)	26966.70(23)
	20277.99(~13)	20500.50(07)	20734.64(-4)	15886.19(-1)	16027.85(1)	16176.50(5)
3 ₂₁ - 3 ₁₂	20273.87(26)	20496.75(24)	20731.02(2)	15882.32(7)	16024.00(-5)	16172.61(-21)
	19603.23(-6)	19797.53(-5)	20002.89(0)	15562.23(-3)	15678.67(3)	15801.44(6)
$4_{22} - 4_{13}$	19585.94(-18)	19790.10(-10)	19985.56(0)	15549.51(-11)	15665.90(-14)	15799.65(-18)
	20147.97(1)	20290.21(-1)	20442.07(0)	16503.80(-3)	16575.72(-3)	16652.73(0)
5 ₂₃ - 5 ₁₄	20128.15(4)	20270.10(-4)	20421.93(0)	16489.37(3)	16561.18(-8)	16638.20(-4)
	22339.79(1)	22405.86(2)	22479.23(0)	19081.69(-2)	19090.18(-5)	19101.76(1)
6 ₂₄ - 6 ₁₅	22319.21(3)	22384.84(-9)	22458.10(-8)	19066.00(-14)	19074.57(-5)	19085.91(-21)
	26460.62(-9)	26429.62(2)	26402.40(-1)	23495.75(-2)	23427.65(1)	23359.47(-1)
$7_{25} - 7_{16}$	26438.62(18)	26407.40(5)	26370.02(-6)	23479.15(-5)	23410.06(1)	23341.85(-1)
	32573.56(-9)	32438.27(-6)	32301.83(-2)	29634.92(-4)	29504.86(-4)	29359.63(-6)
$8_{26} - 8_{17}$	32548.85(18)	32413.38(13)	32276.73(2)	29635.12(28)	29483.99(20)	29338.86(27)
$2_{12} - 1_{01}$	27242.15(-1)	27348.96(-7)	27461.00(6)	25107.84(-3)	25182.89(-1)	25261.42(2)
$3_{13} - 2_{02}$	27229.98(-2)	27336.60(-5)	27448.38(-15)	25098.80(7) 33496.62(-1)	25173.83(6) 33589.22(1)	25252.36(6) 33686.13(5)
$3_{13} - 2_{12}$ $3_{03} - 2_{12}$	25937.96(-14)	25901.83(-6)	25863.15(-12)	33488.49(-20) 26232.72(-6) 26236.70(-9)	33581.15(-14) 26218.10(-7) 26222 20(19)	33678.70(-10) 26202.18(-11) 26206.78(.16)
-03 -12	25944.26(20)	25908.00(-7)	25869.44(-3)	26236.70(9)	26222.20(19)	26206.28(16)

a. Figures in parentheses indicate the difference between the observed and calculated frequencies. The bar indicates the component of the doublet could not be measured due to some reasons. For example, the line was overlapped by the other strong line and so on. The transition with only one entry means unresolved doublet.

TABLE Ib

Observed	Frequencies	of Methyl	Fluorogermane	(MHz) ^a

Transition Ka'Kc'+J"Ka"JKc"	, ⁷ 4Ge	¹³ CH ₃ GeH ₂ F ⁷² Ge	⁷⁰ Ge	74Ge	CD ₃ GeH ₂ F 72Ge	70Ge
	10557.01(-5)	10566.31(-6)	10575.90(-8)	9443.06(2)	9342.23(1)	9361.68((
1 ₀₁ - 0 ₀₀	10555.98(11) 20883.56(-7)	10565.30(12) 20906.97(-6)	10574.91(12) 20931.14(-7)			
2 ₀₂ - 1 ₀₁	20881.30(-3)	20904.78(5)	20928.95(4)	18705.54(0)	18727.64(0)	18750.54(5
2 ₁₂ - 1 ₁₁	19550.87(-5) 19553.15(8)	19578.73(-7) 19580.99(2)	19607.63(-7) 19609.94(0)	17577.29(-1)	17603.56(-2)	17630.92(1
2 ₁₁ - 1 ₁₀	22677.19(-7) 22670.89(10)	22686.48(-8) 22680.16(10)	22696.02(-13) 22689.80(20)	20194.85(6)	20205.22(4)	20215.88(
3 ₀₃ - 2 ₀₂	30780.60(-6) 30777.43(5)	30826.10(-9) 30823.03(12)	30873.23(-9) 30870.20(16)	27628.65(2)	27670.13(0)	27713.21(
3 ₁₃ - 2 ₁₂	29291.34(-7) 29190.66(11)	29235.75(-7) 29235.13(16)	29281.97(-5) 29281.31(12)	26249.78(3)	26201.25(-3)	26344.60(
3 ₁₂ - 2 ₁₁	33859.06(-6) 33853.57(16)	33876.38(-8) 33870.94(20)	33894.38(-9) 33888.94(20)	20170.20(9)	30188.38(6)	30207.29(
3 ₂₂ - 2 ₂₁	31671.29(-2)	31699.07(7)	32178.00(-6)	28329.20(-12)	28356.64(-10)	28385.32(-
3 ₂₁ - 2 ₂₀	32561.14(-5)	32571.18(-8)	32581.97(-4)	29029.14(-5)	29042.55(7)	29056.77 (~
3 ₁₂ - 3 ₁₃	9357.23(-5) 9352.70(2)	9302.33(-1)	9245.22(4) 9240.75(14)			
4 ₁₃ - 4 ₁₄	15481.93(-3)	15394.44(0)	15303.18(-3)	12978.30(-4)	12902.60(1) 12901.85(-3)	12823.20(- 12822.40(-
5 ₁₄ - 5 ₁₅	22865.07(6)	22746.15(3)	22621.65(0)	19204.10(2)	19099.40(9)	18989.57(
6 ₁₅ - 6 ₁₆				26252.40(5)		
6 ₂₄ - 6 ₂₅	12000.26(-6)	11821.83(-4)	11637.20(2)	9650.80(-8)	9503.23(-5)	9349.90(-
7 ₂₅ - 7 ₂₆	18821.90(4)	18576.62(1)	18321.72(-2)	15260.69(1)	15054.30(~9)	14839.43(
8 ₂₆ - 8 ₂₇				22061.35(-4) 22060.95(10)	21799.64(2) 21799.18(8)	21526.62(
2 ₁₁ - 2 ₀₂	10474.74(-2) 10464.76(5)	10530.99(1) 10520.90(1)	10590.03(-6) 10579.87(-2)			
3 ₁₂ - 3 ₀₃	13553.18(-4) 13540.64(-9)	13851.25(-1) 13568.59(~13)	13611.25(1) 13598.62(3)	11761.52(0) 11760.39(-3)	11787.24(2) 11786.10(-2)	11814.50(11813.46(
413 - 404	18202.71(-3) 18187.38(6)	18187.58(1) 18172.17(9)	18172.75(2) 18157.00(-15)	15596.74(-1) 15595.50(-1)	15586.13(-1) 15584.90(0)	15575.72(
5 ₁₄ - 5 ₀₅	24467.57(8)	24403.54(3)	24337.47(4)	20796.39(3)	20742.66(~3)	20687.39(
6 ₁₅ - 6 ₀₆	24447.96(0) 32036.65(5)	24383.83(-9) 31934.75(10)	24317.71(-6) 31827.87(11)	20794.90(-1) 27153.45(8)	20741.20(-4) 27062.69(6)	20685.91(26968.40(
	32011.30(-13) 28521.56(1)	31909.36(-9) 28715.61(-1)	31802.46(-7) 28919.72(-6)	27151.46(-12) 25260.74(-2)	27060.70(-15) 25428.49(-4)	26966.30(25604.65(
3 ₂₂ - 3 ₁₃	31871.24(6)	32042.90(0)	32223.72(0)	25257.94(10) 28056.08(1)	25425.64 (3) 28204.76 (7)	25601.86(28361.06(
423 - 414				20053.05(-3)	29201.82(12)	28358.03(
3 ₂₁ - 3 ₁₂	20284.50(4) 20281.06(-20)	20510.90(-2)		18304.20(-1) 18301.75(-11)	18501.38(-1) 18498.92(-11)	
4 ₂₂ - 4 ₁₃	19561.40(7) 19543.87(12)	19761.19(-1) 19743.62(0)	19972.30(-3) 19954.71(8)	17586.07(-2) 17583.80(-9)	17763.09(0) 17750.82(-6)	17949.88(17947.68(
5 ₂₃ - 5 ₁₄	18870.22(8) 19949.72(-16)	20120.20(-1) 20099.79(-3)	20280.22(2) 20259.53(-1)	17754.48(2) 17752.56(10)	17892.08(-3) 17890.10(1)	18038.47(18036.46(
6 ₂₄ - 6 ₁₅	21926.80(6) 21906.12(-6)	22003.38(~1) 21982.73(10)	22087.70(2) 22066.64(-1)	19164.90(0) 19163.25(16)	18243.32(1) 19241.52(3)	19328.60(19436.90(
7 ₂₅ - 7 ₁₆				22067.05(-3) 22065.42(-1)		22072.05(22070.38(
8 ₂₆ - 8 ₁₇				26579.71(-1) 26578.08(-6)	26490.24(-4) 26488.71(1)	26401.50(26399.97(
2 ₁₂ - 1 ₀₁				23999.19(-4) 23998.25(-2)	24094.10(-6) 24093.23(3)	24193.34(24192.45(
3 ₁₃ - 2 ₀₂				31553.41(-1) 31552.59(9)	31667.75(-2) 31666.90(4)	31787.45(31786.60(
	24995.42(-5)	24956.82(-8)	24915.80(-15)	22335.04(-11)	22303.71(-11)	

a. See the footnote of Table I-a.

INDLL II	TA	BL	Æ	Π
----------	----	----	---	---

Observed Frequencies of s-CH₂DGeH₂F Species (MHz)^a

⁷⁴ Ge		72 _{Ge}		⁷⁰ Ge
10188.90(0)	10197.34(-1)	10206.30(1)
20192.26(0)	20213.00(-2)	20234.75(0)
18946.16(0)	18971.63(2)	18998.31(1)
21809.40(0)	21817.82(-1)	21826.82(0)
29844.35(0)	29884.20(-1)	29925.47(1)
28309.76(0)	28350.23(0)	28392.33(-1)
32589.21(-1)	32604.61(1)	32620.80(0)
8574.33(-3)	8523.80(-5)	8471.30(1)
14210.16(-2)	14128.79(3)	14043.95(-1)
21059.50(-1)	20946.04(0)	20827.55(0)
		28724.97(0)	28579.29(0)
10148.70(1)	9992.44(1)	9830.87(0)
16167.92(1)	15946.88(0)	15717.54(-1)
23536.58(0)	23252.95(0)	22957.60(1)
10578.26(-1)	10636.36(1)	10697.40(1)
13323.13(-1)	13356.83(-1)	13392.72(-1)
17459.14(2)	17454. (2)	17450.46(2)
23092.67(1)	23040.89(-1)	22097.95(-1)
30049.08(0)	29954.60(0)	29856.43(0)
29139.12(1)	29335.43(1)	29541.53(-1)
32187.54(2)	32363.50(-1)	32548.62(2)
21471.88(-2)	21700.60(-1)	21940.77(1)
20575.80(0)	20794.35(1)	21004.08(-3)
20586.02(-1)	20754.05(0)	20932.38(-1)
21897.84(1)	22004.12(0)	22118.90(0)
				24849.14(1)
29441.85(-1)	29368.03(0)	29296.30(0)
26475.64(1)	26580.00(0)	26689.30(1)
23560.99(1)	23517.24(1)	23470.90(0)
	10188.90 (20192.26 (18946.16 (21809.40 (29844.35 (28309.76 (32589.21 (8574.33 (14210.16 (21059.50 (10148.70 (16167.92 (23536.58 (10578.26 (13323.13 (17459.14 (23092.67 (30049.08 (29139.12 (32187.54 (21471.88 (20575.80 (20586.02 (21897.34 (29441.85 (26475.64 (10188.90(0) 20192.26(0) 18946.16(0) 21809.40(0) 29844.35(0) 28309.76(0) 32589.21(-1) 8574.33(-3) 14210.16(-2) 21059.50(-1) 10148.70(1) 16167.92(1) 23536.58(0) 10578.26(-1) 13323.13(-1) 17459.14(2) 23092.67(1) 30049.08(0) 29139.12(1) 32187.54(2) 21471.88(-2) 20575.80(0) 20586.02(-1) 21897.34(1) 29441.85(-1) 26475.64(1)	10188.90(0) 10197.34(20192.26(0) 20213.00(18946.16(0) 18971.63(21809.40(0) 21817.82(29844.35(0) 29884.20(28309.76(0) 28350.23(32589.21(-1) 32604.61(8574.33(-3) 8523.80(14210.16(-2) 14128.79(21059.50(-1) 20946.04(28724.97(10148.70(1) 9992.44(16167.92(1) 15946.88(23536.58(0) 23252.95(10578.26(-1) 10636.36(13323.13(-1) 13356.83(17459.14(2) 17454. (23092.67(1) 23040.89(30049.08(0) 29954.60(29139.12(1) 29335.43(32187.54(2) 3263.50(21471.88(-2) 21700.60(20575.80(0) 20794.35(20586.02(-1) 20368.03(26475.64(1) 26580.00(10188.90 (0) 10197.34 (-1) 20192.26 (0) 20213.00 (-2) 18946.16 (0) 18971.63 (2) 21809.40 (0) 21817.82 (-1) 29844.35 (0) 29884.20 (-1) 28309.76 (0) 28350.23 (0) 32589.21 (-1) 32604.61 (1) 8574.33 (-3) 8523.80 (-5) 14210.16 (-2) 14128.79 (3) 21059.50 (-1) 20946.04 (0) 28724.97 (0) 10148.70 (1) 9992.44 (1) 16167.92 (1) 15946.88 (0) 23536.58 (0) 23252.95 (0) 10578.26 (-1) 10636.36 (1) 13323.13 (-1) 13356.83 (-1) 17459.14 (2) 17454. (2) 23092.67 (1) 23040.89 (-1) 30049.08 (0) 29954.60 (0) 29139.12 (1) 29335.43 (1) 32187.54 (2) 32363.50 (-1) 20576.00 (0) 20794.35 (1) 20586.02 (-1) 20754.05 (0) 29441.85 (-1) 29368.03 (0) 26475.64 (1) 26580.00 (0)

 Figures in parentheses indicate the difference between the observed and calculated frequencies.

frequencies for the transitions of the + and - states were taken and fitted by the usual modified rigid rotor formula. It was found that the average frequencies of the transitions could be predicted though the RMS value (the root-mean square deviation between the observed and calculated frequencies) was slightly larger than that for the *s*-CH₂DGeH₂F species.

The first determination of the r_s structure was made using the rotational constants determined for the species having the CH₃ or CD₃ group and the approximate rotational constants for the CH₂DGeH₂F species. The pure torsional energy levels of the CH₂DGeH₂F species were computed from the r_s coordinates and the V_3 obtained for the normal species by the formulation proposed by Quade *et al.* and the effective rotational Hamiltonian was derived up to the fourth order by perturbation formulae.

TABLE III

Transition	a-CH ₂ D ⁷⁴ GeH ₂ F		a-CH	a-CH ₂ D ⁷² GeH ₂ F			a-CH ₂ D ⁷⁰ GeH ₂ F	
J'Ka'Kc' + J"Ka"JKc"	+state	-state	+state	2	-state	+state	-state	
101 - 000	10432.				(-4)		.98(~1)	
$2_{02} - 1_{01}$	20618.	34(-1)	2064	2.21	.(0)		.25(7)	
212 - 111	19308.	56(1)	1933	6.60	(2)	19365	.84(-7)	
$2_{11} - 1_{10}$	22422.76(3)	22422.24(-3)	22432.16(6) 2	2431.55(-3)) 22441.50(-12	
$2_{12} - 1_{01}$	25829.47(-2)	25828.21(1)) 26036.85(-2	
$2_{11} - 2_{02}$	9882.60(0)	9880,62(1)			9930.80(-1)) 9983.67(1	
$3_{03} - 2_{02}$	30348.36(-2)	30347.77(2)	30395.47(0394.38(6)) 30443.43(2	
$3_{13} - 2_{12}$	28818.66(-1)				8863.40(-2)			
$3_{12} - 2_{11}$	33464.95(3)	33464.74(0)	33483.05(1) 3	3481.76(-4)) 33500.46(-2	
		25137.80(-2)	25106.42(-			25073.10(-1		
$3_{12} - 3_{13}$	9317.83(5)	9316.10(2)			9261.17(-3)) 9204.15(~2	
$3_{12} - 3_{03}$		12996.60(0)			.3017.78(0)) 13040.71(-1	
$3_{22} - 3_{13}$	26713.32(5)	26707.62(-1)	26890.05(-1			27076.29(-8) 27071.00(1	
413 - 414	15398.70(-3)	15395.83(-5)	15312.18(
$4_{13} - 4_{04}$	17706.64(5)	17703.20(0)			7680.87(-2)) 17658.77(4	
$4_{23} - 4_{14}$	30062.81(-10)	30056.70(1)			0211.24(-2)) 30374.22(5	
$4_{22} - 4_{13}$		18023.08(-4)			8202.53(-6)	18395.60(0) 18391.90(-9	
514 - 515	22687.85(0)	22683.67(8)			2567.41(-2)			
$5_{14} - 5_{05}$		23992.62(-6)			23923.70(1)) 23852.41(-4	
	18669.15(2)		18796.22(-	3) 1	8792.42(1)) 18928.29(3	
624 - 625	12475.39(0)) 12105.95(3	
624 - 615	20922.33(4)				20969.45(~3)) 21027.26(-3	
	19288.48(-6)		19144.34(-	3) 1	L9140.95(-2)) 18886.98(-3	
725 - 716	25043.12(-3)				24994.40(-5)	24957.96(-8) 24953.29(2	
826 - 817		31048.66(-4)			30905.10(0)	30765.12(1		
826 - 827	27572.52(5)	27567.78(4)	27274.56(4) 2	27269.80(0)	26963.22(3) 26958.45(-1	

Observed Frequencies of the a-CH2DGeH2F Species (MHz)^a

a. Figures in parentheses indicate the difference between the observed and calculated frequencies. The bar indicates the component could not be measured by some reasons. The transition with only one entry means an unresolved line.

For the CH₂D⁷⁴GeH₂F species, pure torsional energy levels E_{σ}^{v} are found to array in the increasing energy order of E_{+}^{0} , E_{-}^{0} , E_{s}^{0} , E_{-}^{1} , E_{+}^{1} , E_{s}^{1} ..., where σ stands for the + and - states of the *a*-CH₂DGeH₂F and the *s*-CH₂DGeH₂F species and *v* stands for the torsional quantum numbers.

For CH₂DCHO molecule, this ordering is reported by Turner *et al.* (7) to be E_s^0 , E_+^0 , E_-^0 ... and our calculation using the same computer program as that used for the CH₂DGeH₂F molecule gives the same ordering of the energy levels.

The energy differences $\Delta E(\sigma, \sigma') = E^0_{\sigma} - E^0_{\sigma}$, between the levels are computed to be $\Delta E^0(-, +) = 160$, $\Delta E^0(s, -) = 59\,670$ MHz, respectively, where the V_3 is assumed to be 950 cal/mol and $\Delta E^0(-, +) = 215$, $\Delta E^0(s, -) = 57\,800$ MHz when the assumed V_3 is 900 cal/mol.

Furthermore, it is found that the mixing between E_s^0 and E_+^0 states is very slight and the mixing between E_s^0 and E_-^0 is forbidden from the symmetry so that the rotational constants of the s-CH₂DGeH₂F species determined above can be safely regarded to be the unperturbed rotational constants of this species.

The derived effective rotational Hamiltonian for the CH_2DGeH_2F species indicates that the effective rotational constants of the + and - states of the a- CH_2DGeH_2F species show very small differences with each other and the terms connecting these two states are also so small that they are negligible unless the rotational energy levels are in near degeneracy between the + and - states.

In order to find the possibility of near degeneracy, the spectra for the + and - states were fitted in the usual modified rigid rotor formula, separately, and the approximate rotational constants for the + and - states were obtained. The differences of the

HAYASHI ET AL.

TABLE IVa

Rotational, Centrifugal Distortion Constants, ^a and Quantities Related to the Methyl Internal						
Rotation of Methyl Fluorogermane						

		CH3GeH2F			CH3GeD2F	
	⁷⁴ Ge	Ge	⁷⁰ Ge	⁷⁴ Ge	72 Ge	⁷⁰ Ge
(MHZ) (MHZ) (MHZ)	13359.964(101) 6251.735(39) 4625.027(38)	13438.511(84) 6251.696(33) 4634.415(32)	13520.962(83) 6251.695(31) 4544.246(30)	11563.920(72) 6007.954(29) 4512.886(28)	11615.390(76) 6007.942(31) 4520.739(30)	11669.442(91) 6007.909(37) 4528.900(36)
J (kHz) JK (kHz) K (kHz) J (kHz) J (kHz) K (kHz)	7.18(242) -37.38(175) 111.38(2182) 2.56(8) 1.45(130)	5.80(202) -38.95(146) 134.70(1823) 2.53(7) 2.45(110)	6.99(193) -38.63(134) 130.20(1791) -2.56(6) 0.04(3)	6.95(175) -27.99(154) 66.06(1571) 2.24(6) 0.34(89)	6.95(186) -28.57(163) 60.18(1673) 2.26(6) -0.14(96)	5.52(224) -26.12(196) 93.11(2003) 2.34(8) -3.50(123)
α (amu·Å ²) (GHz) a b c c(cal/mol) b	3.2045(fix) 169.39 0.80686(518) 0.59074 0.0 936.1 (6) 36°13'(30')	3.2045(fix) 169.47 0.80778(437) 0.58949 0.0 935.9 (5) 36°07'(26')	3.2045(570) 169.50 0.80562(431) 0.59244 0.0 937.2 (4) 36°20'(25')	3.2072(1130) 167.91 0.81486(534) 0.57966 0.0 931.2 (7) 35°26'(32')	3.2072(fix) 167.93 0.81352(550) 0.58154 0.0 932.9 (8) 35°34'(33')	3.2072(fix) 167.96 0.81218(658) 0.58340 0.0 934.9 (10) 35°41'(39')
MS (MHz) ax.dev. ^c (MHz)	0.10 0.20	0.08 0.24	0.08 0.26	0.07 0.28	0.08 0.20	0.09 0.27
et d	34°15' 1°58'	34°14' 1°53'	34°14' 2° 6'	33°42' 1°44'	33°42' 1°52'	33°41' 2°
α (3.1276 a	$amu \cdot \hat{A}^2$) and dire	ection cosines	were fixed at th	e values calcula	ed from the rs	structure.
3(cal/mol)	958.9 (44)	947.7 (70)	947.2 (72)	946.3 (51)	948.2 (56)	950.7 (61)
MS (MHz) ax.dev. (MHz)	0.73 1.63	0.56 1.47	0.61 1.50	0.50 1.26	0.55 1.67	0.59 1.70
	⁷⁴ Ge	¹³ CH ₃ GeH ₂ F 72 _{Ge}	⁷⁰ Ge	⁷⁴ Ge	CD3GeH2F 72Ge	⁷⁰ Ge
(MHz) (MHz) (MHz)	13170.819(116) 6059.445(35) 4496.910(34)	13250.442(111) 6059.454(33) 4506.215(33)	13333.640(129) 6059.430(38) 4515.846(38)	11797.252(65) 5375.929(32) 4067.128(31)	11866.545(70) 5376.537(32) 4075.696(31)	11939.050(79) 5377.098(33) 4084.587(31)
JK (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz)	6.63(209) -35.80(242) 163.70(2434) 2.51(12) -0.27(154)	8.24(199) -38.24(231) 193.74(2316) 2.28(11) 1.00(150)	6.96(231) -36.57(282) 160.13(2704) 2.28(13) 1.20(178)	6.10(189) -26.51(118) 89.97(1384) 1.44(6) 2.98(112)	6.33(188) -23.08(123) 105.83(1481) 1.66(6) -0.47(131)	4.06(193) -25.17(124) 107.43(1688) 1.45(6) 3.50(130)
a (amu.Å) (GHz) a c	3.2068(fix) 169.31 0.82574(1171) 0.56405 0.0	3.2068(fix) 169.36 0.82453(867) 0.56582 0.0	3.2068(1795) 169.43 0.82462(925) 0.56570 0.0	6.4041(fix) 90.43 0.85323(4839) 0.52154 0.0	6.4041(fix) 90.50 0.85317(4578) 0.52163 0.0	6.4041(fix) 90.51 0.84954(4866) 0.52752 0.0
3(cal/mol)	933.4 (11) 34°20'(1°11')	934.7 (12) 34°28'(53')	935.2 (13) 34°27'(56')	904.8 (45) 31°26'(5°19')	907.1 (46) 31°26'(5°02')	909.2 (51) 31°50'(5°17')
MS (MHz) ax.dev.(MHz) st ^d 8	0.08 0.16 32°43' 1°37'	0.08 0.20 32°44' 1°44'	0.09 0.20 32°44' 1°43'	0.06 0.16 28°58' 2°28'	0.06 0.17 29° 1' 2°25'	0.06 0.20 29° 5' 2°45'
x (3.1276 a	amu·Å) and dire	ction cosines	were fixed at th	e values calculat	ed from the r	structure.
(cal/mol)	951.8 (42)	950.9 (44)	951.7 (44)	928.1 (63)	930.6 (65)	933.1 (71)
	0.30	0.28	0.28	0.08	0.08	0.09

а. b.

c. d.

The Watson-A reduction formula was used. The angle between the methyl top axis and the a-inertial axis, obtained from the direction cosine, λ_a . The absolute maximum deviation between the observed and calculated frequencies. The angle between the methyl top axis and the a-inertial axis calculated from the $r_{\rm g}$ coordinate values $\Delta \theta = \theta - \theta_{\rm st}$. e.

rotational constants between the + and - states were actually very small; that is, for the a-CH₂D⁷⁴GeH₂F species, (ΔA , ΔB , ΔC) = (1.53, 0.12, -0.15) MHz, where ΔG $= G^{+} - G^{-} (G = A, B, \text{ and } C).$

The energy levels of the + and - states were calculated from the rotational constants and the centrifugal distortion constants obtained above and the energy difference between the + and - states, $\Delta E^0(-, +)$.

TABLE IVb

			s-CH2DGeH2F	
		⁷⁴ Ge	⁷² Ge	⁷⁰ Ge
A	(MHz)	13339.847(20)	13418.727(23)	13501.386(17
в	(MHz)	5810.308(8)	5810.270(9)	5810.327(7
с	(MHz)	4378.620(8)	4387.091(9)	4395.994 (7
۵J	(kHz)	6.28 (50)	3.84 (50)	6.28 (44
∆.JK	(kHz)	-31.83 (36)	-29.60 (40)	-30.02 (28
Δĸ	(kHz)	144.37 (441)	139.09 (492)	117.34 (372
δj	(kHz)	1.92 (2)	1.94 (2)	1.89 (1
δĸ	(kHz)	2.33 (38)	1.85 (37)	2.10 (27
RMS N ^b	(MHz)	0.02 27	0.02 28	0.02
N ~				29
		a-	CH2DGeH2F +State	
A	(MHz)	12516.124(91)	12589.988(109)	12667.751(112
В	(MHz)	5995.030(28)	5995.046(36)	5995.165(42
с	(MHz)	4437.798(27)	4447.082(35)	4456.874(39
Δj	(kHz)	5.76 (179)	2.28 (230)	5.46 (258
ΔJK	(kHz)	~36.76 (160)	-36.60 (212)	-37.12 (238
Δĸ	(kHz)	144.19 (1967)	123.73 (2212)	153.47 (2461
δJ	(kHz)	2.54 (7)	2.62 (11)	2.62 (11
δĸ	(kHz)	0.93 (156)	1.20 (225)	0.68 (268
		a-	CH ₂ DGeH ₂ F -State	.
A	(MHz)	12514.620(73)	12588.544(127)	12666.080(129
В	(MHz)	5994.905(28)	5994.891(35)	5995.007(43
С	(MHz)	4437.964(27)	4447.246(35)	4457.010(39
ΔJ	(kHz)	13.99 (186)	10.13 (226)	13.14 (283
∆јк	(kHz)	-36.29 (164)	-36.82 (216)	-35.62 (242
Δĸ	(kHz)	152.37 (1658)	138.19 (2508)	106.39 (2790
бj	(kHz)	2.58 (7)	2.47 (11)	2.60 (11
δĸ	(kHz)	-1.17 (155)	1.13 (225)	0.93 (270
Q ∆E	(MHz) (MHz)	8.07 (178) 180.0 (ass)	10.77 (158) 180.0 (ass)	9.44 (216 180.0 (ass
	(MHZ)	0.05	0.06	180.0 (ass 0.07
RMS N ^D	(MA2)	46	43	43
A ^C	(MHz)	12515.372(82)	12589.266(118)	12666.915(120
Baur	(MHz)	5994.968(28)	5994.968 (36)	5995.086(42
C	(MHz)	4437.BB1(27)	4447.164(35)	4456,942(39
ΔAd	(MHz)	1.504	1.444	1.671
ΔA				
ΔB	(MHz)	0.125	0.155	0.158

Rotational and Centrifugal Distortion Constants^a of CH₂DGeH₂F Species

a. The Watson-A reduction formula was used. b. Number of frequencies used. c. Gave = $(G^+G^-)/2$. d. $\Delta G = G^+ - G^-$.

It was found that there is no possibility of near degeneracy within 50 MHz for the energy levels with $J \leq 8$ in the interval of the $\Delta E^0(-, +)$ value between 150 and 250 MHz.

From the above facts, the splittings of the spectra for the $a-CH_2DGeH_2F$ species are considered to arise mainly from the small differences of the rotational constants of the + and - states which are composed from many perturbation terms with small magnitudes.

The connecting terms between the + and - states are also composed from many perturbation terms with small magnitudes.

Hence, we cannot calculate the rotational constants containing the internal rotation contributions and the coefficients of the connecting terms to sufficient accuracy in a manner similar to the symmetric internal rotor such as the CH₃ group.

Therefore, we gave up the attempt to determine the V_3 value from the splittings between the + and - states and tried to obtain the coefficients Q, N, E, and D in the following Hamiltonian given by Quade *et al.*, experimentally as merely the adjustable parameters:

$$\langle + |H| + \rangle = A^{+}P_{a}^{2} + B^{+}P_{b}^{2} + C^{+}P_{c}^{2} + H_{cent}^{+}$$

$$\langle - |H| - \rangle = A^{-}P_{a}^{2} + B^{-}P_{b}^{2} + C^{-}P_{c}^{2} + H_{cent}^{-} + \Delta E$$

$$\langle + |H| - \rangle = QP_{a} + NP_{b} + E(P_{a}P_{c} + P_{c}P_{a}) + D(P_{b}P_{c} + P_{c}P_{b})$$

For the centrifugal distortion terms, H_{cent}^+ and H_{cent}^- , the Watson-A reduction formula was used.

Assuming $\Delta E = 180.0$ MHz, an attempt was made to determine four coefficients Q, E, N, and D of the terms in the connecting matrix elements by a least-squares calculation. It was found that Q and D terms in the Hamiltonian produce some improvements for the fit of the observed frequencies, while E and N terms do not. Furthermore, as Q and D terms show a similar behavior with each other for the fit of the present observed frequencies, the use of one of Q and D terms is sufficient to predict the frequencies.

Hence, we decided to use the Q term for the fit since the error limit of the coefficient of the Q term was obtained to be much smaller than that of the D term. As already mentioned, the ΔE is insensitive for the present observed frequencies. The quantities determined are listed in Table IVb and the differences between the observed and calculated frequencies are given in Table IIIc.

The average of the rotational constants for the + and - states listed in Table IVb was used for the determination of the r_s structure.

r_s STRUCTURE

The present data are sufficient to determine the r_s coordinates of all the atoms in the molecule except those of the fluorine atom which have to be solved with the aid of the first moment equations.

The r_s coordinates were computed by the Kraitchman equations from the moments of inertia determined from the observed rotational constants. The coordinates of the atoms in the molecular plane were solved by Chutjian type Kraitchman equations according to the remarks given by Rudolph (8).

The coordinates of the atoms which could be solved from several sets of the parent and isotopic species were taken to be the average values of these sets after the appropriate transformation between the principal axes systems was carried out when the parent species of a given set was not the normal species. The procedures of these calculations were already described in our previous paper (3).

There are three atom coordinates whose values are so small that the solutions of the Kraitchman equations cannot be reliable. They are $x_a(Ge)$, $x_a(H)$ of the GeH₂ group, the $x_b(H_s)$ of the CH₃ group. Since the coordinates of the fluorine atom are solved by the first moment equations, these unreliable coordinates should be fixed by the other relations. For the x_b coordinate of the H_s hydrogen atom in the CH₃ group, the Kraitchman value gives 1.047 Å for the $r(CH_s)$ bond length which is too small to be accepted and a structural assumption of $r(CH_s) = r(CH_a)$ was used to fix the value. The x_a of the germanium atom was fixed by the zero inertia product condition, $I_{ab} = 0$, while the x_a of the hydrogen atom in the GeH₂ group was assumed at first to be the Kraitchman value although its magnitude was small. Several trials were made to fix the x_a of the hydrogen atom.

However, reasonable results could not be obtained. Then, we decided to use the Kraitchman value in spite of its smallness. The adequacy of the present choice for the x_a coordinate of the hydrogen atom in the GeH₂ group will be proved passively when we compare the structural parameters of the GeH₂ group with the corresponding parameters of the analogous molecules.

The differences between the observed and calculated moments of inertia are included in Table V, and the r_s coordinates thus obtained are listed in Table VI. The differences are small and positive for all the species and the RMS value is 0.20145 amu · Å² so that the r_s structure is considered to be well established.

DISCUSSIONS

Structure

In Table VII, the structural parameters calculated from the r_s coordinates are listed where the parameters for the analogous molecules, ethyl fluoride and methyl fluorosilane, are also listed.

For ethyl fluoride and methyl fluorosilane, the parameters in the previous papers (3, 9, 11) were calculated from the r_s coordinates obtained by different choices of the assumptions to the case of the present molecule. Hence, we recalculated them with the same assumptions.

		δI _a ^b		δIb ^b		δIc ^b	Pcc	ΔPc ^c
Species	Ia	01a	Ib	816	10			B. C
CH3 ⁷⁴ GeH2F	37.82765(29)	0.01846	80.83772(50)	0.10342	109.26985(90)	0.32283	4.69776(84)	
CH3 ⁷² GeH2F	37.60655(24)	0.01970	80.83822(43)	0.10413	109.04850(75)	0.32402	4.69814(71)	0.00038(155)
CH3 ⁷⁰ GeH2F	37.37722(23)	0.02095	80.83824(40)	0.10436	108.81766(70)	0.32397	4.69890(67)	0.00114(151)
CH ₃ ⁷⁴ GeD ₂ F	43.70283(27)	0.01861	84.11782(41)	0.10349	111.98510(70)	0.32285	7.91777(69)	3,22001(153)
CH ₃ ⁷² GeD ₂ F	43.50917(29)	0.02020	84.11799(43)	0.10387	111.79057(74)	0.32377	7.91829(73)	3.22054(157)
CH3 ⁷⁰ GeD ₂ F	43.30764(34)	0,02101	84.11845(52)	0.10454	111.58913(89)	0.32488	7.91848(87)	3.22072(172)
¹³ CH ₃ ⁷⁴ GeH ₂ F	38.37089(34)	0.01758	83.40302(48)	0.09890	112.38295(85)	0.32198	4.69548(84)	-0.00228(168)
¹³ CH ₃ ⁷² GeH ₂ F	38.14031(32)	0.01834	83.40289(45)	0.09914	112.15089(82)	0.32162	4.69616(80)	-0.00160(164)
13CH370GeH2F	37.90233(37)	0.02018	83.40322(52)	0.09985	111.91170(94)	0.32264	4.69693(92)	-0.00083(176)
CD3 ⁷⁴ GeH2F	42.83845(24)	0.08180	94.00719(56)	0.10619	124.25869(95)	0.33938	6.29348(87)	1.59572(172)
CD ₃ ⁷² GeH ₂ F	42.58830(25)	0.08246	93.99656(56)	0,10652	123.99747(94)	0.33992	6.29370(88)	1,59594(172)
CD ₃ ⁷⁰ GeH ₂ F	42.32967(28)	0.08377	93.98676(58)	0.10796	123.7256 (94)	0.34121	6.29443(90)	1.59667(174)
s-CH2D74GeH2F	37.88469(6)	0.06084	86.97921(12)	0.12789	115.41901(21)	0.34030	4.72245(19)	0.02469(104)
s-CH2D ⁷² GeH2F	37.66199(7)	0.06191	86.97978(14)	0.12889	115.19615(24)	0.34164	4.72281(22)	0.02505(106)
s-CH ₂ D ⁷⁰ GeH ₂ F	37.43142(5)	0.06331	86.97893(11)	0.12848	114.96285(18)	0.34076	4,72375(17)	0.02599(101)
a-CH ₂ D ⁷⁴ GeH ₂ F	40.38042(27)	0.02047	84.30003(39)	0.09999	113.87777(69)	0,32064	5.40134(68)	0.70358(152)
a-CH ₂ D ⁷² GeH ₂ F	40.14341(38)	0.02214	84,30003(51)	0.10109	113.64006(89)	0.32257	5.40169(89)	0.70393(173)
a-CH2D ⁷⁰ GeH2F	39.89732(38)	0.02351	84.29837(59)	0.10056	113.39075(99)	0.32170	5,40247(98)	0,70471(182)

TABLE V

Moments of Inertia of Methyl Fluorogermane (amu · Å²)^a

Figures in parentheses indicate the uncertainties attached to the last digit. The differences between the observed and calculated moments of inertia. The calculated I_g was computed from the r_s coordinate values listed in Table VI. $P_C = (I_a + I_b - I_C)/2$. $\Delta P_C = P_C$ (isotopic) - P_C (normal). ь.

TABLE VI	LE VI
----------	-------

	Atom Coordinates (Å) ^a						
	×a	×b	×c				
Fb	1.33339(1044)	0.77376(581)	0				
Ge	-0.01004(252) ^c	-0.33045(121)	0				
н	0.16893(211)	-1.15987(35)	±1.26488(3)				
С	-1.59745(52)	0.76159(113)	0				
Ha	-1.62018(52)	1.38670(66)	±0.88350(103)				
Нs	-2.47637(22)	0.12964(542) ^d	0				
		······					

 a. Root-mean square deviation between the observed and calculated moments of inertia for eighteen isotopic species is 0.20145 amu·Å².
 b. Coordinate values were solved by the first moment

equations.

c. Solved by $I_{ab}=0$ condition.

d. Solved under the assumption of r(CH_s)=r(CH_a).

"M" indicates C, Si, and Ge atoms hereafter in this section. For the skeleton, r(MF) values are larger than those for MH_3F molecules (12, 13, 14) and the ratios of elongation are 0.36, 0.57, and 0.40% for M = C, Si, and Ge, respectively. On the other hand, r(CM) values are smaller than those for CH_3MH_3 molecules (15, 16, 17) and the ratio of shortening decreases from C to Ge (1.32, 1.17, 0.94%). The angle $\alpha(CGeF)$ (106°3') is much smaller than the corresponding angles for methyl fluorosilane and ethyl fluoride (109°15', 109°34').

For the MH_2 group, r(MH) values are smaller than those of CH_3MH_3 molecules and the ratio of shortening decreases from C to Ge (0.70, 0.47, 0.39%).

As for the angles around the M atom, very interesting results are noted; that is, the angle $\alpha(MHF)$ is much smaller than the angle $\alpha(HMC)$ for all the CH₃MH₂F type molecules. This fact is also found for ethyl halides, methyl chlorogermane, and methyl bromogermane (9, 18, 19, 11, 20, 21).

As shown in Fig. 1, we can define δ as the angle between the bisector plane of the $\alpha(CMF)$ angle and the MH_2 plane. δ can be computed as follows:

$$\delta = (\beta(HMC) - \beta(HMF))/2$$

$$\cos(\beta(HMC)) = \cos(\alpha(HMC))/\cos(\alpha(HMH)/2)$$

$$\cos(\beta(HMF)) = \cos(\alpha(HMF))/\cos(\alpha(HMH)/2).$$

For ethyl halides, the values for δ are 5°23', 5°, 6°55', and 7°44' for fluoride, chloride, bromide, and iodide, respectively. For CH₃*M*H₂F molecules, they are 5°23', 6°18', and 9°30' for M = C, Si, and Ge, respectively, and for CH₃GeH₂X molecules, they are 9°30', 6°46', and 5°29' for X = F, Cl, and Br, respectively.

This relation is also found for CH₃X molecules (12), that is, when one of the three hydrogen atoms is considered to be the group corresponding to the CH₃ group of CH₃MH₂X molecules, the values of δ are 2°, 2°38′, 3°31′, and 3°36′, for X = F, Cl, Br, and I, respectively.

For all the molecules, it is important to note that the δ values are always positive so that the two hydrogen atoms of the MH_2 group incline to the halogen atom and

TABLE VII

	CH ₃ Ge This work R	H ₂ F obert et al(ref.1)	CH ₃ S Recalculated ^b	SiH ₂ F Reported (Ref.3)	CH ₃ CH ₂ F ref.9
Skeleton	1.739(14)	1.752	1.602(9)	1.597(9)	1,387(3)
r(MF)(Å) r(CM)(Å)	1.927(4)	1.925	1.845(4)	1.847(5)	1.512(2)
a (CMF)		106°18'	109°15'(47')	109° 9'(39')	109°34'(21')
MH ₂		1 505 ()		1 470 / 21	
r(MH)(Å)	1.523(2)	1.525(ass)	1.478(2)	1.478(2)	1.094(1)
a (HMC)			112°27'(18')	112°17'(16')	112°14'(8')
a (HMF)	104°46'(24')			106°26'(28')	106°49'(8')
a (HMH)	112°17'(15')	110° (ass)	109°51'(16')		108°53'(5')
δ ^c	9°30'(22')	-2° (ass)	6°18'(43')	5°54'(57')	5°23'(19')
CH3					
r(CH _s)	1.083(ass)	1.093(ass)	1.089(ass)	1.105(5)	1.093(ass)
r(CH _a)	1.083(2)	1.093(ass)	1.089(1)	1.089(1)	1.093(1)
α(MCH _s)	109°45'(52')		109°39'(46')		109°43'(20')
α (MCH _a)	110° 9'(19')	109°50'	111°22'(17')	111°20'(26')	110°16'(6')
$\alpha (H_s C H_a)$	108°39'(23')	109° 6'	107°50'(17')	108°23'(28')	108°50'(6')
$\alpha (H_a C H_a)$	109°24'(25')	109° 6'	108°39'(13')		108°51'(4')
Y ^d	110° 1'(30')	109°50'	110°48'(27')		110° 5'(17')
θe	16'(47')	0 (ass)	1° 9'(42')		22'(17')
θe βf	-45'(48')	0 (ass)	-49'(30')	-11'(32')	-1'(10')
$I_{\alpha}(st)^{i}(amu \cdot A^{2})$	3.1276		3.1789		3.1843
B 9	-1°58'(30')	-1°54'	-47'	-47'	-32'(25')
θ_{int}^{j} I _a (int) ^j	3,2045(570)				3.155 (14) ^h
$\Delta \theta = \theta - \theta_{int}$	2°14'	1°54'	1°56'	2°32'	

Structural Parameters* of Analogous Molecules

a. Figures in parentheses indicate uncertainties attached to the last digit calculated from 2.5 times the standard deviation.

For methyl fluorosilane, the parameter values were obtained by different choices of ь. the condition in the previous paper. Then, they were re-calculated by the same conditions as the case of methyl fluorogermane.

The angle between the MH₂ plane and the bisector plane of the angle α (FMC). See the t c. d. The unperturbed MCH angle.

The tilt angle obtained from the structure. e.

The difference between $\alpha(H_sCH_a)$ and $\alpha(H_aCH_a)$. f.

The tilt angle obtained from the A-E splitting analysis. q.

h.

Calculated from the data in Ref. 10. The methyl top moment of inertia calculated from the rs structure. i.

j. The methyl top moment of inertia obtained from the A-E splitting analysis.

the δ increases in the order of C, Si, and Ge. It is very difficult to interpret this tendency at present. If this relation comes from the steric repulsion between the hydrogen and halogen atoms, δ should decrease from C to Ge. We are working at present to determine whether or not this fact can be predicted by MO calculations.

One of the differences of the r_s structures between this work and that reported by Roberts et al. (1) is the difference of the angle relation mentioned above. Roberts et al. transferred the angle of CH_3GeH_3 and GeH_3F molecules to those of the present molecule and their α (HGeC) is smaller than the α (HGeF).

For the CH₃ group, the x_b coordinate of the H_s hydrogen atom for all the CH₃MH₂F molecules is so small that it is fixed by the $r(CH_s) = r(CH_a)$ assumption. For $r(CH_a)$, the value decreases from C to Ge. For CH_3MH_3 molecules, r(CH) also decreases from C to Ge (1.102, 1.093, 1.083 Å).

For the examination of the angle relations of the methyl group, the following three angles are defined as in the previous paper (3). The unperturbed MCH angle γ defined by

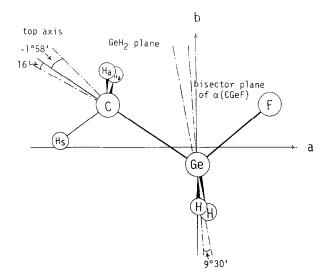


FIG. 1. The bisector plane of α (CGeF), the GeH₂ plane, and the top axis of the methyl group of methyl fluorogermane.

$$\gamma = \frac{1}{3} [2\alpha (MCH_a) + \alpha (MCH_s)]$$

which indicates whether or not the methyl group is slender. The tilt angle θ defined by

$$\theta = \frac{2}{3} [\alpha(MCH_a) - \alpha(MCH_s)]$$

which corresponds to the angle between the methyl internal top axis and the MC bond when the three CH bond lengths are equal to each other since the internal top axis is defined by the direction of the normal line of the plane made by the three hydrogen atoms in the methyl group and the axis passes through the center of masses of the three hydrogen atoms.

The angle β defined by

$$\beta = \alpha(H_{s}CH_{a}) - \alpha(H_{a}CH_{a})$$

indicates whether or not the methyl group is flat along the molecular plane.

For CH₃MH₂F molecules, γ is larger than the tetrahedral angle and the methyl top is slender. θ is very small for ethyl fluoride and methyl fluorogermane while it is 1°9' for methyl fluorosilane. It is noted that θ is positive for CH₃MH₂F molecules and the methyl group tilts toward the two hydrogen atoms of the MH₂ group.

For ethyl fluoride, β is small, while they are -49' and -45' for methyl fluorosilane and germane, respectively.

In Table VII, the tilt angle obtained from the A-E splitting analysis is also listed as θ_{int} .

It is noted that θ_{int} values are negative for all the CH₃MH₂F molecules so that the methyl group is considered to be tilted toward the fluorine atom from the A-E splitting analysis.

The difference $\Delta \theta$ between θ and θ_{int} is more than 1° and is significant even though the error limit is large.

Roberts *et al.* assumed the tilt angle obtained from the A-E splitting analysis when their r_s structure was established and they concluded that the methyl group tilted toward the fluorine atom.

However, as already mentioned in the previous papers (3, 5), the methyl tilt angle obtained from the A-E splitting analysis has not always coincided with that from the r_s structure. When θ is not zero, θ_{int} is always smaller than θ so that θ_{int} is negative for methyl fluorogermane.

Methyl Internal Rotation

From the r_s coordinates, the methyl top moment of inertia, I_{α} around the top axis could be calculated to be 3.1276 amu $\cdot \text{Å}^2$ which is smaller than the value (3.2045 amu $\cdot \text{Å}^2$) determined from the A-E splitting analysis mentioned in the earlier section. For methyl fluorosilane, we used the I_{α} calculated from the r_s structure. For ethyl fluoride, Dreizler *et al.* (10) could determine the I_{α} from the A-E splitting analysis and the value is 3.155 amu $\cdot \text{Å}^2$ which is smaller than the I_{α} calculated from the r_s coordinates (3.1843 amu $\cdot \text{Å}^2$).

In the previous paper (5), we reported that the I_{α} values obtained from the A-E splitting analysis (3.1889 and 3.2084 amu \cdot Å²) are larger than the ones calculated from the $r_{\rm s}$ coordinates for dimethyl silane and dimethyl sulfide, viz., 3.1234 and 3.1953 amu \cdot Å².

For methyl fluorogermane, the difference between the two I_{α} values corresponds to elongation of the distance of a hydrogen atom from the top axis by about 0.16 Å. A similar result was already reported by Bauder and Gunthard (22) for acetaldehyde and they suggested that it is due to the vibrational interactions and the structural relaxations.

The calculations of the A-E splitting fit were carried out assuming the I_{α} and direction cosines of the top axis calculated from the r_s coordinates and regarding V_3 as a variable. The results are listed briefly in Table IVa. The RMS and absolute maximum deviations of the fit become fairly worse and the error limits of the V_3 values increase. The same tendencies have already been found for dimethyl silane and sulfide in the previous paper (5).

The choice of I_{α} affects the V_3 value. When the I_{α} is assumed to be the value from the A-E splitting analysis, the V_3 is 935 ± 3 cal/mol which is the average of nine species having the CH₃ group, while the V_3 is 907 ± 3 cal/mol for the species with the CD₃ group. The V_3 of the CD₃ group is smaller by about 3% than that of the CH₃ group. For acetone, Nelson and Pierce (23) found a similar result. The V_3 for (CD₃)₂CO is smaller by about 6.5% as compared with the V_3 of (CH₃)₂CO.

RECEIVED: January 3, 1989

REFERENCES

- 1. R. F. ROBERTS, R. VARMA, AND J. F. NELSON, J. Chem. Phys. 64, 5035-5050 (1976).
- 2. L. C. KRISHER AND J. A. MORRISON, J. Chem. Phys. 64, 3556-3559 (1976).

3. Y. SHIKI, M. OYAMADA, AND M. HAYASHI, J. Mol. Spectrosc. 92, 375-390 (1982).

HAYASHI ET AL.

- 4. C. R. QUADE AND C. C. LIN, J. Chem. Phys. 38, 540-550 (1963).
- 5. M. HAYASHI, N. NAKATA, AND S. MIYAZAKI, J. Mol. Spectrosc., 135, 270-288 (1989).
- 6. J. K. G. WATSON, in "Vibrational Spectra and Structure, A Series of Advances," Vol. 6, pp. 1–89, Elsevier, New York, 1977.
- 7. P. H. TURNER, A. P. COX, AND J. A. HARDY, J. Chem. Soc. Faraday Trans. 277, 1217-1231 (1981).
- 8. H. D. RUDOLPH, J. Mol. Spectrosc. 89, 460-464 (1981).
- 9. M. HAYASHI, M. FUJITAKE, T. INAGUSA, AND S. MIYAZAKI, J. Mol. Struct., in press.
- 10. E. FLIEGE, H. DREIZLER, J. DEMAISON, D. BONCHER, J. BURIE, AND A. DUBRULLE, J. Chem. Phys. 78, 3541-3544 (1983).
- 11. T. INAGUSA, M. FUJITAKE, AND M. HAYASHI, J. Mol. Spectrosc. 128, 456-468 (1988).
- 12. J. L. DUNCAN, J. Mol. Struct. 6, 447-456 (1970).
- 13. A. G. ROBIETTE, G. J. CARTWRIGHT, A. R. HOY, AND I. M. MILLS, Mol. Phys. 20, 541-553 (1971).
- 14. L. C. KRISHER, J. A. MORRISON, AND W. A. WATSON, J. Chem. Phys. 57, 1357-1358 (1972).
- 15. K. KUCHITSU, J. Chem. Phys. 49, 4456-4462 (1968).
- 16. R. W. KILB AND L. PIERCE, J. Chem. Phys. 27, 108-112 (1957).
- 17. V. W. LAURIE, J. Chem. Phys. 30, 1210-1214 (1959).
- 18. T. INAGUSA AND M. HAYASHI, to appear.
- 19. T. INAGUSA AND M. HAYASHI, J. Mol. Spectrosc. 129, 160-171 (1988).
- 20. W. ZEIL AND D. CHRISTEN, J. Phys. Chem. 84, 1790-1792 (1980).
- 21. J. R. DURIG, J. F. SULLIVAN, A. B. MOHAMAD, S. CRADOCK, AND Y. S. LI, J. Chem. Phys. 84, 5796-5809 (1986).
- 22. A. BAUDER AND HS. H. GÜNTHARD, J. Mol. Spectrosc. 60, 290-311 (1976).
- 23. R. NELSON AND L. PIERCE, J. Mol. Spectrosc. 18, 344-352 (1965).