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Stéphanie Fréville, Philippe Delbecq, Vu Moc Thuy, Huguette Petit, Jean Pierre Célérier and
Gérard Lhommet*

Université P. & M. Curie, Laboratoire de Chimie des Hétérocycles, associé au CNRS, 4, place Jussieu,
F-75252 Paris Cedex 05, France

Received 10 May 2001

Abstract—A new diastereoselective synthesis of 2,6-disubstituted piperidinic alkaloids is presented. Three natural compounds, the
(-)-pinidinone 1a, the (+)-dihydropinidine 1b and the (-)-pinidinol 1¢ were prepared from optically pure (6 R)-6-methylpiperidin-2-
one 2. This method is based on the chemo- and diastereocontrolled reductions of an exocyclic f-enamino ketone. © 2001 Elsevier

Science Ltd. All rights reserved.

Substituted piperidine systems are present in many
natural compounds and some of them exhibit an exten-
sive range of biological activities.! During our continu-
ing studies on natural products, we have recently
reported a new enantioselective synthesis of 2-substi-
tuted piperidines from chiral 6-alkylpiperidin-2-ones.>

In this paper, we describe a diastereoselective and ver-
satile approach to three cis-2,6-disubstituted piperidine
alkaloids: the (-)-pinidinone 1a, the (+)-dihydro-
pinidine 1b and the (-)-pinidinol lc¢ starting from a
common chiral synthon, the (6R)-6-methylpiperidin-2-
one 2 (Scheme 1).

This optically pure piperidinic lactam is easily prepared
in a few steps from (—)-phenylglycinol and a &-keto
acid.> If numerous asymmetric syntheses of di-
hydropinidine 1b were described in the literature,® only
one hemisynthesis starting from natural (-)-pinidinol 1¢
was published,* followed by one enantioselective syn-
thesis of the pinidinone la, which was presented by
Meyers et al. from a chiral bicyclic lactam.® The (-)-
pinidinol 1¢ was non-stereoselectively synthesized firstly
by Leete et al..® and then a long but enantioselective
approach was proposed by Momose et al.”

* Corresponding author Fax: (33) 01 44 27 30 56; e-mail: lhommet
(@ccr jussieu.fr

Our strategy to a general access to these alkaloids was
based upon the easy availability of cyclic B-enamino
ketone 4.

Two approaches were described for the preparation of
such compounds.

A ‘one-pot’ condensation of acetylacetone with a lactim
ether in the presence of triethylamine led directly to a
B-enamino ketone but this method was only used with
unsubstituted lactams.® The second way consisted in the
condensation of a B-keto ester with lactim ether fol-
lowed by a decarboxylation with boric acid.’

We have developed a general and versatile method-
ology for preparing chiral 6-substituted-pf-enamino
ketones. Direct condensation of chiral lactim ether 3
with acetylacetone in the presence of catalytic nickel
acetylacetonate gave the (Z) isomer of the Bf-enamino
ketone 4'° stereoselectively in 60% yield (Scheme 2).
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The reduction of the C=C of compound 4 was the next
step of the synthesis. Catalytic hydrogenation condi-
tions were not chemoselective irrespective of the cata-
lyst employed. Thus, we carried out a chemical
reduction with lithium aluminium hydride. Under these
conditions, (—)-pinidinone la was regio- and
diastereoselectively obtained in 70% yield (d.e. >98%).

The chemoselectivity of this reduction of an amide
vinylogous was described earlier.!! It is a 1,4-reduction
and the keto group is transformed into its enolate salt
and released during the hydrolytic work-up.

The very high diastereoselectivity observed during the
reduction can be easily rationalized by the characteristic
structure of the B-enamino ketone 4. In fact the (Z)
geometry of 4, due to an intramolecular H-bond which
planarizes the molecule, permits an axial approach of
the hydride to furnish the syn 1,3-relationship for the
two substituents of the pinidinone 1a (Scheme 3).

Starting from optically pure (6R)-6-methylpiperidin-2-
one 2, (—)-pinidinone la was obtained in three steps
and in 26% overall yield ([«]& —41 (¢ 0.9, EtOH).'? This
specific rotation is higher than the value proposed by
Meyers for the same enantiomer ([a]d +25 (c 0.4,
EtOH).> It can be noted that no trace of any
diastereomer was detected during our synthesis. Only
one value was proposed for the natural product ([o]¥
—-4 (¢ 3.5, MeOH)* but this rotation was determined
after extraction and then chemical transformation of
the mixture.
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In order to confirm the optical purity of our product,
we finally decided to transform compound la into a
well-known alkaloid, namely the (+)-dihydropinidine
1b. Direct total reduction of the carbonyl function was
effected by using Clemensen conditions and then 1b
was isolated as its hydrochloride in 30% yield and in a
good optical purity: ([« +12 (¢ 1.2, EtOH);"3 lit. ([o]®
+12.7 (¢ 1.0, EtOH)."* The poor yield of this step was
due to the difficulties encountered during the extraction
from the Zn-Hg amalgam. The non-epimerizing condi-
tions of this reduction confirmed the structure of (-)-
pinidinone 1a.

The last part of our work lay in the synthesis of the
(-)-pinidinol 1c, isolated from Picea engelmannii'®> and
whose absolute configuration was determined by X-ray
crystal determination.'®

Catalytic hydrogenation conditions of 4 using Ni
Raney or Pd/C as catalysts diastereoselectively led to
only one diastereomer of 1c¢ (Scheme 4). The asymmet-
ric secondary alcohol was then inverted, after carba-
matation, with a Mitsunobu’s reaction'” using
p-nitrobenzoic acid to lead to the inverted ester. After
hydrolysis and then hydrogenolysis, the (-)-pinidinol 1c
was isolated with a very good optical purity: ([«]®
—17.5 (¢ 0.63, CHCl,);"® lit. ([«] —17 (¢ 0.99, CHCl,)."®
This synthesis is a highly enantioselective route to
(-)-pinidinol starting from non-natural material.

In conclusion, we have reported a new, versatile and
diastereoselective synthesis of 2,6-disubstituted piperi-
dinic alkaloids starting from an easily available chiral
lactam.
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