2989-2990 (1970) vol. 43 BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ## Studies of Heteroaromaticity. XLVI.¹⁾ Syntheses of 2,5-Disubstituted 1,3,4-Oxadiazoles Containing Nitrofuran Nucleus ## Tadashi Sasaki and Toshiyuki Yoshioka Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya (Received April 13, 1970) In a previous paper, we reported that aroyl and ary nitrile oxides have a similar reactivity in the 1,3-dipolar cycloaddition.2) In continuation of our studies on similar reactivity of the nitrile imines,3) this paper describes our attempts to prepare N-aroyl nitrile imines. 1-α-chlorobenzylidene-2-ethoxycarbonylhydrazine is reported to cyclize by triethylamine to 2-phenyl-5-ethoxy-1,3,4-oxadiazole⁴⁾ and in a similar manner, aryhydrazonochloroacetic acids cyclize to 4-aryl-5-oxo-1,3,4-oxadizol-2-ines.⁵⁾ Both cyclization reactions might be explained by postulating intermediate N-ethoxycarbonyl benzonitrile imine (A) and Ccarboxynitrile imine (B), respectively. $$\begin{array}{c} \operatorname{Ar-C=NNHCOOC_2H_5} \to \left(\operatorname{Ar-C=N-N-COOC_2H_5}\right) \\ \subset \operatorname{I} & (\operatorname{A}) \\ & \operatorname{N----N} \\ \to \operatorname{Ar-C} & \operatorname{C-OC_2H_5} \\ \\ \operatorname{Ar-NHN=C-COOH} \to \left(\operatorname{Ar-N-N=C-COOH}\right) \to \\ & \operatorname{Cl} & (\operatorname{B}) \\ \\ \operatorname{Ar-N-N=C} \to & \operatorname{N----N-Ar} \\ & \operatorname{COOH} & \operatorname{HC} & \operatorname{CO} \\ \end{array}$$ As in the preparation of the nitrile imines,3) lead tetraacetate-oxidation of the readily available aroylhydrazones (II) from aroylhydrazines (I) was carried out at room temperature. The products were characterized as 2,5-disubstituted 1,3,4oxadiazoles (III), simple oxidation products of aroylhydrazones which provide general procedure for the preparation of 2,5-disubstituted 1,3,4oxadiazoles.⁶⁾ The recent appearance of an article on a similar subject7) prompted us to write this note. A sequence of the reaction and the mechanism postulated for the preparation of III are given below. $$\begin{array}{c} \text{R-CONHNH}_{2} \xrightarrow{R'\text{CHO}} \text{RCONHN=CHR'} \xrightarrow{\text{Pb(OAc)}_{4}} \\ \text{I} & \text{II} \\ \\ \begin{pmatrix} \text{RCON-N=C-R'} \\ \text{Pb(OAc)}_{2} \\ \text{OAc} \\ \\ \text{R-CON-N=C-R'} \leftrightarrow \text{R-C} \xrightarrow{N-N \oplus \\ \text{O}^{2}} \text{C-R'} \\ \\ \text{N----N} \\ \text{R-C} & \text{C-R'} \\ \text{III} \\ \\ \end{array}$$ The results are summarized in Tables 1 and 2. ## Experimental8) Starting Materials. Aroylhydrazines (Ia:9) 5nitro-2-furoyl, Ib:10) 5-nitro-2-furylacroyl, and Ic:11) benzoylhydrazine) and 5-nitro-2-furylacrolein¹²⁾ were prepared by the known procedures. All the other aldehydes were commercial products. General Procedure. Conversion of I to II. A mixture of 0.6 g (3.5 mmol) of 5-nitro-2-furoylhydrazine ¹⁾ Part XLV: T. Sasaki, K. Kanematsu and A. Kakehi, Chem. Commun, 1970, 1030. ²⁾ T. Sasaki, T. Yoshioka and Y. Suzuki, This Bulletin, 43, 2991 (1970). ³⁾ T. Sasaki and T. Yoshioka, ibid., 43, 1254 (1970). ⁴⁾ T. Bacchetti, Gazz. Chem. Ital., 91, 866 (1961). ⁵⁾ M. O. Losinskii and P. S. Pelkis, Zh. Obshch. Khim., 32, 526 (1962); 33, 2231 (1963). ⁶⁾ A. Hetzheim and K. Mockel, "Advances in 1,3,4-Oxadiazole Chemistry," in "Advances in Heterocyclic Chemistry," Vol. 7, A. R. Katritzky and A. J. Boulton Ed., Academic Press, New York (1966), p. 190. ⁷⁾ W. A. F. Glaston, J. B. Aylward and R. O. C. Norman, J. Chem. Soc., C, 1969, 2587. ⁸⁾ The melting points were measured on a micro hot stage and are not corrected. The microanalyses were carried out with a Perkin-Elmer Model 240 Elemental Analyzer. The ultraviolet spectra were obtained on a Jasco ORD/UV-5 and the infrared spectra on a Jasco IR-S spectrometer. ⁹⁾ M. Amorosa and L. Lipparini, Ann. Chim. (Rome), 45, 724 (1955). ¹⁰⁾ T. Sasaki, Chem. Pharm. Bull. (Tokyo), 2, 95 (1954). T. Curtius and H. Franzen, Ber., 35, 3421 (1902). ^{T. Curtius and H. Franzen, Ber., 35, 3421 (1902). H. Saikachi and H. Ogawa, J. Amer. Chem.} Soc., 80, 3462 (1958). Table 1. ACYLHYDRAZONES RCONHN=CHR' II | R | R' | Product Mp. °C | | Yield
% | Found (Calcd) | | | UV λ _{max} mμ | IR v _{CO} ^{KBr} | |---------------------------------|--|----------------|---------|------------|-----------------|-------------------------|--------------------------|---|-----------------------------------| | | | | | | Ć % | H% | N% | $(\varepsilon \times \overline{10^{-4}})$ | cm ⁻¹ | | NF-* | $\mathrm{C_6H_5-}$ | Ha | 212—214 | 85 | 55.58
(55.60 | 3.58
3.50 | 16.35
16.21) | 322 (1.7),
298 (1.58),
280 (1.7) | 1665 | | NF- | $p ext{-} ext{Cl-} ext{C}_6 ext{H}_4 ext{-}$ | Hb | 226—229 | 80 | 48.95
(49.08 | $\substack{2.75\\2.72}$ | 14.25
14.31) | | 1665 | | NF- | <i>p</i> -CH ₃ -C ₆ H ₄ - | - IIc | 210-214 | 70 | 57.20
(57.14 | 4.15
4.06 | 15.45
15.3 8) | | 1670 | | NFCH=CH- | C_6H_5 | Hd | 218—220 | 90 | 58.85
(58.94 | $\frac{3.95}{3.89}$ | 14.80
14.73) | | 1660 | | C_6H_5 – | NF- | He | 215—219 | 90 | 55.55
(55.60 | $\frac{3.65}{3.50}$ | 16.15
16.21) | | 1660 | | C ₆ H ₅ - | NFCH=CH- | IIf | 233—235 | 90 | 59.05
(58.94 | 3.78
3.89 | 14.75
14.73) | | 1640 | ^{*} NF: 5-nitro-2-furyl TABLE 2. OXADIAZOLES $$\begin{array}{c|c} N & \longrightarrow N \\ \parallel & \parallel \\ R - C & C - R \\ & \searrow O \\ & \coprod \end{array}$$ | R | R' | Product Mp °C | | Yield | Found (Calcd) | | | UV λ _{max} mμ | $\begin{array}{c} IR \ \nu_{C=N}^{KB^1} \\ cm^{-1} \end{array}$ | |--------------|---|---------------|-----------|-------|----------------------------|---------------------|-----------------|--------------------------------|---| | | | 11000 | i Mp G | -% | $\widetilde{\mathbf{C}\%}$ | H% | N% | $(\varepsilon \times 10^{-4})$ | cm ⁻¹ | | NF- | $\mathrm{C_6H_5-}$ | IIIa | 231-232 | 80 | 56.15
(56.03 | 2.85
2.74 | 16.45
16.34) | (332 (1.55)
(266 (1.14) | 1610 | | NF- | $p ext{-}\mathrm{Cl} ext{-}\mathrm{C}_6\mathrm{H}_4 ext{-}$ | IIIb | 216—217 | 75 | 49.35
(49.42 | $\frac{2.15}{2.06}$ | 14.55
14.41) | {330 (1.8)
268 (1.4) | 1615 | | NF- | <i>p</i> -CH ₃ -C ₆ H ₄ - | IIIc | 180—182 | 85 | 57.65
(57.56 | $\frac{3.45}{3.34}$ | 15.55
15.49) | {336 (1.68)
268 (1.29) | 1610 | | NFCH=CH- | C_6H_5- | IIId* | 216-218 | 40 | 59.45
(59.36 | $\frac{3.35}{3.20}$ | 14.95
14.84) | (368 (2.34)
292 (1.06) | 1605 | | $C_6H_{5^-}$ | NF- | IIIa | 227 - 231 | 70 | (| | / | $(233 \ (1.16)$ | 1610 | | C_6H_5 - | NFCH=CH- | IIId | 215 - 217 | 30 | | | | | 1605 | ^{*} A. Sugihara and M. Ito, Yakugaku Zasshi, 85, 744 (1965); mp 205-206°C. (Ia) and 0.4 g (3.5 mmol) of benzaldehyde was refluxed in 40 ml of ethanol for 7 hr. After cooling, the precipitates were collected and recrystallized from ethanol to give 0.85 g (85%) of 1-benzylidene-2-(5-nitro-2-furoyl)-hydrazine (IIa). The results of similar reactions using several aroyhydrazines and aromatic aldehydes are summarized in Table 1. Conversion of II to III. To a stirred suspension of 0.5 g (2 mmol) of IIa in $100\,\mathrm{m}l$ of dichloromethane was added 1.3 g (3 mmol) of lead tetraacetate at room temperature. The mixture was stirred at room temperature for 2 days. After filtering off the undissolved materials, the solvent was removed under reduced pressure. The residue was recrystallized from ethanol-benzene-tetrahydrofuran to afford 0.38 g (80%) of 2-(5-nitro-2-furyl)-5-phenyl-1,3,4-oxadiazole (IIIa), $231-232^{\circ}\mathrm{C}$ (decomp.). Analytical and spectral data are summarized in Table 2.