2989-2990 (1970) vol. 43 BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

Studies of Heteroaromaticity. XLVI.¹⁾ Syntheses of 2,5-Disubstituted 1,3,4-Oxadiazoles Containing Nitrofuran Nucleus

Tadashi Sasaki and Toshiyuki Yoshioka

Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya (Received April 13, 1970)

In a previous paper, we reported that aroyl and ary nitrile oxides have a similar reactivity in the 1,3-dipolar cycloaddition.2) In continuation of our studies on similar reactivity of the nitrile imines,3) this paper describes our attempts to prepare N-aroyl nitrile imines. 1-α-chlorobenzylidene-2-ethoxycarbonylhydrazine is reported to cyclize by triethylamine to 2-phenyl-5-ethoxy-1,3,4-oxadiazole⁴⁾ and in a similar manner, aryhydrazonochloroacetic acids cyclize to 4-aryl-5-oxo-1,3,4-oxadizol-2-ines.⁵⁾ Both cyclization reactions might be explained by postulating intermediate N-ethoxycarbonyl benzonitrile imine (A) and Ccarboxynitrile imine (B), respectively.

$$\begin{array}{c} \operatorname{Ar-C=NNHCOOC_2H_5} \to \left(\operatorname{Ar-C=N-N-COOC_2H_5}\right) \\ \subset \operatorname{I} & (\operatorname{A}) \\ & \operatorname{N----N} \\ \to \operatorname{Ar-C} & \operatorname{C-OC_2H_5} \\ \\ \operatorname{Ar-NHN=C-COOH} \to \left(\operatorname{Ar-N-N=C-COOH}\right) \to \\ & \operatorname{Cl} & (\operatorname{B}) \\ \\ \operatorname{Ar-N-N=C} \to & \operatorname{N----N-Ar} \\ & \operatorname{COOH} & \operatorname{HC} & \operatorname{CO} \\ \end{array}$$

As in the preparation of the nitrile imines,3) lead tetraacetate-oxidation of the readily available aroylhydrazones (II) from aroylhydrazines (I) was carried out at room temperature. The products were characterized as 2,5-disubstituted 1,3,4oxadiazoles (III), simple oxidation products of aroylhydrazones which provide general procedure

for the preparation of 2,5-disubstituted 1,3,4oxadiazoles.⁶⁾ The recent appearance of an article on a similar subject7) prompted us to write this note. A sequence of the reaction and the mechanism postulated for the preparation of III are given below.

$$\begin{array}{c} \text{R-CONHNH}_{2} \xrightarrow{R'\text{CHO}} \text{RCONHN=CHR'} \xrightarrow{\text{Pb(OAc)}_{4}} \\ \text{I} & \text{II} \\ \\ \begin{pmatrix} \text{RCON-N=C-R'} \\ \text{Pb(OAc)}_{2} \\ \text{OAc} \\ \\ \text{R-CON-N=C-R'} \leftrightarrow \text{R-C} \xrightarrow{N-N \oplus \\ \text{O}^{2}} \text{C-R'} \\ \\ \text{N----N} \\ \text{R-C} & \text{C-R'} \\ \text{III} \\ \\ \end{array}$$

The results are summarized in Tables 1 and 2.

Experimental8)

Starting Materials. Aroylhydrazines (Ia:9) 5nitro-2-furoyl, Ib:10) 5-nitro-2-furylacroyl, and Ic:11) benzoylhydrazine) and 5-nitro-2-furylacrolein¹²⁾ were prepared by the known procedures. All the other aldehydes were commercial products.

General Procedure. Conversion of I to II. A mixture of 0.6 g (3.5 mmol) of 5-nitro-2-furoylhydrazine

¹⁾ Part XLV: T. Sasaki, K. Kanematsu and A. Kakehi, Chem. Commun, 1970, 1030.

²⁾ T. Sasaki, T. Yoshioka and Y. Suzuki, This Bulletin, 43, 2991 (1970).

³⁾ T. Sasaki and T. Yoshioka, ibid., 43, 1254 (1970).

⁴⁾ T. Bacchetti, Gazz. Chem. Ital., 91, 866 (1961).

⁵⁾ M. O. Losinskii and P. S. Pelkis, Zh. Obshch. Khim., 32, 526 (1962); 33, 2231 (1963).

⁶⁾ A. Hetzheim and K. Mockel, "Advances in 1,3,4-Oxadiazole Chemistry," in "Advances in Heterocyclic Chemistry," Vol. 7, A. R. Katritzky and A. J. Boulton Ed., Academic Press, New York (1966), p. 190.

⁷⁾ W. A. F. Glaston, J. B. Aylward and R. O. C. Norman, J. Chem. Soc., C, 1969, 2587.

⁸⁾ The melting points were measured on a micro hot stage and are not corrected. The microanalyses were carried out with a Perkin-Elmer Model 240 Elemental Analyzer. The ultraviolet spectra were obtained on a Jasco ORD/UV-5 and the infrared spectra on a Jasco IR-S spectrometer.

⁹⁾ M. Amorosa and L. Lipparini, Ann. Chim. (Rome), 45, 724 (1955).

¹⁰⁾ T. Sasaki, Chem. Pharm. Bull. (Tokyo), 2, 95 (1954).

T. Curtius and H. Franzen, Ber., 35, 3421 (1902).

<sup>T. Curtius and H. Franzen, Ber., 35, 3421 (1902).
H. Saikachi and H. Ogawa, J. Amer. Chem.</sup> Soc., 80, 3462 (1958).

Table 1. ACYLHYDRAZONES RCONHN=CHR'

II

R	R'	Product Mp. °C		Yield %	Found (Calcd)			UV λ _{max} mμ	IR v _{CO} ^{KBr}
					Ć %	H%	N%	$(\varepsilon \times \overline{10^{-4}})$	cm ⁻¹
NF-*	$\mathrm{C_6H_5-}$	Ha	212—214	85	55.58 (55.60	3.58 3.50	16.35 16.21)	322 (1.7), 298 (1.58), 280 (1.7)	1665
NF-	$p ext{-} ext{Cl-} ext{C}_6 ext{H}_4 ext{-}$	Hb	226—229	80	48.95 (49.08	$\substack{2.75\\2.72}$	14.25 14.31)		1665
NF-	<i>p</i> -CH ₃ -C ₆ H ₄ -	- IIc	210-214	70	57.20 (57.14	4.15 4.06	15.45 15.3 8)		1670
NFCH=CH-	C_6H_5	Hd	218—220	90	58.85 (58.94	$\frac{3.95}{3.89}$	14.80 14.73)		1660
C_6H_5 –	NF-	He	215—219	90	55.55 (55.60	$\frac{3.65}{3.50}$	16.15 16.21)		1660
C ₆ H ₅ -	NFCH=CH-	IIf	233—235	90	59.05 (58.94	3.78 3.89	14.75 14.73)		1640

^{*} NF: 5-nitro-2-furyl

TABLE 2. OXADIAZOLES

$$\begin{array}{c|c} N & \longrightarrow N \\ \parallel & \parallel \\ R - C & C - R \\ & \searrow O \\ & \coprod \end{array}$$

R	R'	Product Mp °C		Yield	Found (Calcd)			UV λ _{max} mμ	$\begin{array}{c} IR \ \nu_{C=N}^{KB^1} \\ cm^{-1} \end{array}$
		11000	i Mp G	-%	$\widetilde{\mathbf{C}\%}$	H%	N%	$(\varepsilon \times 10^{-4})$	cm ⁻¹
NF-	$\mathrm{C_6H_5-}$	IIIa	231-232	80	56.15 (56.03	2.85 2.74	16.45 16.34)	(332 (1.55) (266 (1.14)	1610
NF-	$p ext{-}\mathrm{Cl} ext{-}\mathrm{C}_6\mathrm{H}_4 ext{-}$	IIIb	216—217	75	49.35 (49.42	$\frac{2.15}{2.06}$	14.55 14.41)	{330 (1.8) 268 (1.4)	1615
NF-	<i>p</i> -CH ₃ -C ₆ H ₄ -	IIIc	180—182	85	57.65 (57.56	$\frac{3.45}{3.34}$	15.55 15.49)	{336 (1.68) 268 (1.29)	1610
NFCH=CH-	C_6H_5-	IIId*	216-218	40	59.45 (59.36	$\frac{3.35}{3.20}$	14.95 14.84)	(368 (2.34) 292 (1.06)	1605
$C_6H_{5^-}$	NF-	IIIa	227 - 231	70	(/	$(233 \ (1.16)$	1610
C_6H_5 -	NFCH=CH-	IIId	215 - 217	30					1605

^{*} A. Sugihara and M. Ito, Yakugaku Zasshi, 85, 744 (1965); mp 205-206°C.

(Ia) and 0.4 g (3.5 mmol) of benzaldehyde was refluxed in 40 ml of ethanol for 7 hr. After cooling, the precipitates were collected and recrystallized from ethanol to give 0.85 g (85%) of 1-benzylidene-2-(5-nitro-2-furoyl)-hydrazine (IIa). The results of similar reactions using several aroyhydrazines and aromatic aldehydes are summarized in Table 1.

Conversion of II to III. To a stirred suspension of 0.5 g (2 mmol) of IIa in $100\,\mathrm{m}l$ of dichloromethane

was added 1.3 g (3 mmol) of lead tetraacetate at room temperature. The mixture was stirred at room temperature for 2 days. After filtering off the undissolved materials, the solvent was removed under reduced pressure. The residue was recrystallized from ethanol-benzene-tetrahydrofuran to afford 0.38 g (80%) of 2-(5-nitro-2-furyl)-5-phenyl-1,3,4-oxadiazole (IIIa), $231-232^{\circ}\mathrm{C}$ (decomp.). Analytical and spectral data are summarized in Table 2.