peaks might result from a number of mechanisms involving permutations of *J*-coupling interactions. Cross peaks between the ¹³C resonances at 124.8 and 148.05 ppm and the *tert*-butyl ¹H resonance identify these as the C-3 and C-4 resonances, respectively. The former cross peak might arise from an initial ROESY transfer from the tert-butyl protons to H-3, followed by heteronuclear TOCSY transfer from H-3 to C-3 via one-bond coupling. The latter cross peak might arise from an initial ROESY transfer from the tert-butyl protons to H-3, followed by heteronuclear TOCSY transfer from H-3 to C-4 via long-range coupling $({}^{2}J_{H3-C4})$ \approx 7.0 Hz).¹⁶ These cross peaks were not detected in other experiments which rely on development of coherence through J coupling in the laboratory frame.

HSL provides a valuable means of obtaining long-range structural information in high molecular weight molecules and promises to be an effective means of reducing the problems of rapid CSA relaxation encountered on very high field NMR spectrometers.

Acknowledgment. We thank Kevin D. Heitzhaus for the preparation of the isotactic poly(p-tert-butylstyrene). This work was supported by funds from a University of Akron Faculty Research Grant, a State of Ohio Board of Regents Academic Challenge Grant, NIH Award R15-GM44409-01, and a grant from the NSF Chemical Instrumentation Program (CHE-8820644).

Registry No. 1, 30998-04-0.

Highly Stereocontrolled Total Synthesis of (+)-Allopumiliotoxin 339A

Sakae Aoyagi, Tzu-Chueh Wang, and Chihiro Kibayashi*

Tokyo College of Pharmacy Horinouchi, Hachioji Tokyo 192-03, Japan Received August 28, 1992

The dendrobatid alkaloids of the allopumiliotoxin A class, a series of the naturally occurring 7-hydroxy congeners of the pumiliotoxin A class, are one of the most structurally complex indolizidines produced in nature.¹ The distinct chemical structure and the significant biological activities of this class of alkaloids² have provided the stimulus for development of new methodologies for their syntheses, and two successful approaches to allopumiliotoxins 267A and 339B have been reported by Overman et al.^{3a} and Trost et al.^{3b} Recently, the first total synthesis of (+)-allopumiliotoxin 339A (1), isolated as a minor constituent from skin extracts of a family of Panamanian poison frogs, Dendrobates auratus,⁴ has been published by Overman's group.⁴

In this communication we report a highly stereocontrolled approach to the synthesis of 1, which provides an efficient, novel entry to the allopumiliotoxin A alkaloids. Such an approach is based upon intramolecular cyclization of 3 (X = halogen) for the formation of 1 involving direct construction of the 6-(E)-alkylideneindolizidine ring system as well as establishing the transdiaxial 7,8-diol on the indolizidine ring as shown in Scheme I. We envisioned that this process would exploit the intramolecular Cr(II)-mediated coupling reaction⁶ originally studied by Nozaki

114, 368.

Scheme I

Scheme II^a

^a(a) CF₃CO₂H (3 equiv), CH₂Cl₂, room temperature, then 1,3-dithiane (5 equiv), BuLi (5 equiv), THF, -78 °C; (b) MeOH, Hg(Cl-O₄)₂·xH₂O, CHCl₃, room temperature; (c) ICH₂CN, Et₃N, THF, room temperature; (d) BnBr, KH, THF, reflux; (e) AgNO₃, EtOH, room temperature, then CbzCl, Et₃N, CH₂Cl₂, room temperature; (f) 3 N HCl, THF, room temperature, then NaBH₄, MeOH, room temperature; (g) t-BuMe₂SiCl, imidazole, DMF, room temperature; (h) H₂, 10% Pd/C, MeOH.

Scheme III^a

^a(a) MeMgBr, THF, 0 °C; (b) PCC, CH₂Cl₂, room temperature; (c) (i-PrO)₂P(O)CH₂CO₂Et, NaH, benzene, room temperature; (d) DIBALH, CH₂Cl₂/hexane, -78 °C; (e) CBr₄, PPh₃, CH₂Cl₂, 0 °C; (f) (S)-4-isopropyl-3-propionyl-2-oxazolidinone, LDA, THF, 0 °C; (g) LiAlH₄, THF, 0 °C; (h) DMSO, (COCl)₂, Et₃N, -78 °C; (i) CBr₄ (2 equiv), PPh₃ (4 equiv), CH₂Cl₂, 0 °C; (j) (CH₂O)_n, BuLi (2 equiv), THF, room temperature; (k) Bu₃SnH, PdCl₂(PPh₃)₂ (2 mol %), THF, room temperature; (1) I2, CH2Cl2, room temperature.

19. X = OH

- 20, X = Br

18 (E/Z = 100:0)

and co-workers,⁷ wherein the cyclization would proceed via an alkenylchromium(III) species 2.

⁽¹⁾ Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1986; Vol. 4, Chapter

<sup>Perspectives; Pelletler, S. W., Ed.; Wiley: New YOR, 1900; Vol. 4, Chapter 1, pp 1-274.
(2) (a) Albuquerque, E. X.; Warnick, J. E.; Maleque, M. A.; Kauffman, F. C.; Tamburini, R.; Nimit, Y.; Daly, J. W. Mol. Pharmacol. 1981, 19, 411.
(b) Daly, J. W.; McNeal, E. T.; Overman, L. E.; Ellison, D. H. J. Med. Chem. 1985, 28, 482. (c) Daly, J. W.; Gusovsky, F.; McNeal, E. T.; Secunda, S.; Bell, M.; Creveling, C. R.; Nishizawa, Y.; Overman, L. E.; Sharp, M. J.; Rossignol, D. P. Biochem. Pharmacol. 1990, 40, 315.
(3) (a) Overman I. E.; Goldstein, S. W. J. Am. Chem. Soc. 1984, 106,</sup>

 ^{(3) (}a) Overman, L. E.; Goldstein, S. W. J. Am. Chem. Soc. 1984, 106, 5360.
 (b) Trost, B. M.; Scanlan, T. S. J. Am. Chem. Soc. 1989, 111, 4988.
 (4) Tokuyama, T.; Daly, J. W.; Highet, R. J. Tetrahedron 1984, 40, 1183.
 (5) Overman, L. E.; Robinson, L. A.; Zablocki, J. J. Am. Chem. Soc. 1992, 114, 208

^a(a) *i*-Pr₂NEt, THF, room temperature; (b) Bu₄NF, THF, room temperature; (c) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C; (d) CrCl₂ (5 equiv), NiCl₂ (2.5 mol %), DMF, room temperature; (e) 3 N HCl/THF, room temperature; (f) Li, NH₃/THF, -78 °C.

The synthesis of the optically active pyrrolidine fragment is shown in Scheme II. Deprotection of N-Boc-protected (S)-2acetylpyrrolidine 4 with trifluoroacetic acid (3 equiv) by the known procedure³ afforded the pyrrolidine trifluoroacetate salt, which was immediately treated with excess 2-lithio-1,3-dithiane to produce the tertiary alcohol 5 (54% from 4) as a single diastereomer consistent with a chelation-controlled transition state. Compound 5 was converted to 6(68%) via transformation of the cyclic dithioacetal into the corresponding dimethyl acetal with methanol and $Hg(ClO_4)_2$. After blocking of the amino group by the cyanomethyl group,⁸ O-benzylation of the tertiary alcohol was effected by treating with benzyl bromide and KH⁹ to produce 7 (81%), which was then converted to the carbamate 8(75%) via deblocking of the cyanomethyl group (AgNO₃) and N-protection by the Cbz group. Compound 8 was further transformed into 9 (97%) through acetal hydrolysis and NaBH₄ reduction of the resulting aldehyde. Silvlation of 9 and hydrogenolytic removal of the Cbz group resulted in 10 (80% from 9).

The side chain segment 20 was elaborated from the D-4deoxythreose derivative 11¹⁰ as outlined in Scheme III. Grignard reaction (MeMgBr, THF) followed by PCC oxidation provided the methyl ketone 12 (73% overall yield), which was transformed to the E olefin 13 (84%) by Horner-Emmons condensation with a nice E:Z ratio of 96:4. The bromide 14, obtained from 13 (DIBALH, then CBr_4/PPh_3) in 91% yield, was subjected to C_2 homologation based on Evans alkylation,¹¹ which provided 15 (83%) with virtually complete diastereoselective creation of the R stereogenic center at C-11. Reductive removal of the oxazolidine auxiliary on 15 with LiAlH₄, followed by Swern oxidation and treatment of the resultant aldehyde with CBr₄/PPh₃, furnished the dibromide 16 in 70% overall yield from 15. Compound 16 was converted to the hydroxyalkyne 17 in 92% yield by treatment with BuLi (2 equiv) and paraformaldehyde. Palladium-catalyzed hydrostannation [Bu₃SnH, 2 mol % PdCl₂(PPh₃)₂, room temperature]¹² of 17 provided full stereocontrol for the (tributylstannyl)alkene 18 (93%)¹³ with correct E olefin geometry.¹⁴ Upon exposure of 18 to iodine (CH₂Cl₂, room temperature), iododestannylation smoothly proceeded to give exclusively the (E)iodoalkene 19, which was then converted to the allylic bromide 20 in excellent yield (96% from 18).

Construction of the alkylideneindolizidine ring began with coupling of 10 and 20 in the presence of Hünig base to provide 21 in 70% yield (Scheme IV). Desilylation of 21 followed by Swern oxidation afforded the aldehyde 22 (81%). Intramolecular cyclization of 22 was successfully achieved by application of mild coupling conditions (5 equiv of CrCl₂, 2.5 mol % NiCl₂, DMF, room temperature) with virtually complete stereocontrol, giving rise to 24 in 79% yield. This cyclization through the alkenylchromium(III) intermediate (2 in Scheme I) generated with Ni(II) catalyst via transmetalation led to both formation of the 6-(E)-alkylideneindolizidine and introduction of the axial 7β -hydroxy group at the same time in a single operation. The remarkably high degree of stereoselectivity leading to 24 may be explained by examination of two chair-like transition states, 23a and 23b, the former of which would be destabilized owing to an allylic 1,3-strain¹⁵ between the equatorial chromium alkoxide and the olefin. The preferred transition state 23b leads to the requisite axial 7-hydroxy group.

Finally, sequential removal of the isopropylidene protecting group (3 N HCl, THF) and the benzyl group (Li, NH₃/THF) provided (+)-allopumiliotoxin 339A (1) in 71% overall yield. Synthetic 1 had $[\alpha]^{28}_{D} + 38.8^{\circ}$ (c 0.5, MeOH) [lit.⁴ $[\alpha]^{25}_{D} + 29.4^{\circ}$ (c 1.0, MeOH)], $[\alpha]^{28}_{D} + 72.4^{\circ}$ (c 0.66, CHCl₃) [lit.⁵ $[\alpha]^{23}_{D} + 68.2^{\circ}$ (c 0.5, CHCl₃)] and exhibited spectral data (¹H and ¹³C NMR) identical with those reported⁴ for the natural product.

In conclusion, a new, highly regio- and stereocontrolled approach for the synthesis of allopumiliotoxin 339A has been developed. Our methodology based on an intramolecular chromium(II)-mediated cyclization should prove an efficient tool in the synthesis of the allo series of pumiliotoxins.

Dynamic Interpretation of NMR Data: Molecular Dynamics with Weighted Time-Averaged Restraints and Ensemble **R**-Factor

Uli Schmitz, Anil Kumar, and Thomas L. James*

Department of Pharmaceutical Chemistry University of California San Francisco, California 94143-0446

Received August 3, 1992

. Revised Manuscript Received October 15, 1992

Determination of biomolecular structure in solution via multidimensional NMR and modeling with distance geometry and restrained molecular dynamics (rMD) generally results in a single structure in accord with structural constraints, i.e., interproton distances extracted from nuclear Overhauser enhancement (NOE) spectra and torsion angles arising from coupling constants. With rapid conformational fluctuations, constraints are time-averaged, with the time scale and nonlinear averaging being different for torsion angles and distances. Conceivably then, there is no single energetically reasonable structure that would fit all structural data simultaneously as demonstrated for the peptide antamanide.¹ A

0002-7863/92/1514-10654\$03.00/0 © 1992 American Chemical Society

^{(6) (}a) Rowley, M.; Kishi, Y. Tetrahedron Lett. 1988, 29, 4909. (b) Schreiber, S. L.; Meyers, H. V. J. Am. Chem. Soc. 1988, 110, 5198.

⁽⁷⁾ Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; No-zaki, H. J. Am. Chem. Soc. 1986, 108, 6048.

⁽⁸⁾ Lett, R. M.; Overman, L. E.; Zablocki, J. Tetrahedron Lett. 1988, 29, 654Ì

⁽⁹⁾ Attempts at O-protection of the cyclic dithioketal 5 after Cbz N-protection were unsuccessful, suggesting that the tert-hydroxyl group in 5 is severely hindered.

⁽¹⁰⁾ Servi, S. J. Org. Chem. 1985, 50, 5865. Fronza, G.; Fuganti, C.; Grasselli, P.; Marinoni, G. Tetrahedron Lett. 1979, 3883.

⁽¹¹⁾ Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104. 1737

⁽¹²⁾ Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857.

⁽¹³⁾ This reaction was accompanied by the formation of a small amount (4% yield) of the 3-tributylstannyl regioisomer.

⁽¹⁴⁾ The ¹H NMR spectrum of 18 shows a coupling constant of 35 Hz between Sn and the proton at C-3, proving their E relationship.
(15) (a) Johnson, F. Chem. Rev. 1968, 68, 375. (b) Hoffmann, R. W.

Chem. Rev. 1989, 89, 1841.

^{*} Author to whom correspondence should be addressed: telephone (415) 476-1569 or FAX (415) 476-0688.

⁽¹⁾ Kessler, H.; Griesinger, C.; Lautz, J.; Müller, A.; van Gunsteren, W. F.; Berendsen, H. J. C. J. Am. Chem. Soc. 1988, 110, 3393-3396.