Pyridine Group Assisted Addition of Diazo-Compounds to Imines in the 3-CC Reaction of 2-Aminopyridines, Aldehydes, and Diazo-Compounds

LETTERS 2013 Vol. 15, No. 4 956–959

ORGANIC

Anton V. Gulevich, Victoria Helan, Donald J. Wink, and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States

vlad@uic.edu

Received January 18, 2013

A novel three-component coupling (3-CC) reaction of 2-aminoazines, aromatic aldehydes, and diazo-compounds producing polyfunctional β -amino- α -diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles as well as β -amino acid derivatives.

Nucleophilic addition of diazo-compounds to activated imines bearing strong electron-withdrawing groups at the nitrogen atom represents an important method of C-C bond formation, employed in the synthesis of β -amino acid derivatives, as well as other valuable products

(3) For base-promoted addition of diazo-compounds to activated imines, see: (a) Jiang, N.; Qu, Z.; Wang, J. Org. Lett. **2001**, *3*, 2989. (b) Jiang, N.; Wang, J. Tetrahedron Lett. **2002**, *43*, 1285. (c) Zhao, Y.; Jiang, N.; Wang, J. Tetrahedron Lett. **2003**, *44*, 8339. (d) Chen, S.; Zhao, Y.; Wang, J. Synthesis **2006**, 1705. For a diastereoselective reaction, see: (e) Zhao, Y.; Ma, Z.; Zhang, X.; Zou, Y.; Jin, X.; Wang, J. Angew. Chem., Int. Ed. **2004**, *43*, 5977.

(4) For enantioselective acid-catalyzed addition of diazo-compounds to activated imines, see: (a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360. (b) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054. (c) Maruoka, K.; Hashimoto, T.; Synthesis 2008, 3703. (d) Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. J. Org. Chem. 2011, 76, 6030. (e) Hashimoto, T.; Kimura, H.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2011, 3, 642. (f) Zhang, H.; Wen, X.; Gan, L.; Peng, Y. Org. Lett. 2012, 14, 2126. For heterogeneous catalysis of this reaction, see: (g) Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. B. S.; Venkanna, G. T.; Figueras, F. Adv. Synth. Catal. 2007, 349, 1887.

(Scheme 1, eq 1).^{1,2} Thus, Wang and co-workers reported a base-promoted reaction of N-SO₂R imines with diazoesters producing β -amino- α -diazocarbonyl compounds.³ Terada, Maruoka, and others reported Brønsted acid catalyzed addition of diazo-compounds to N-COAr and N-Boc imines (eq 1).⁴ However, these efficient methods are limited to activated imines only.

Herein we report an efficient Lewis acid catalyzed addition of diazoesters to pyridine-containing imines **1** producing β -amino- α -diazocarbonyl compounds **2** (eq 2).⁵ Moreover, we also developed a 3-CC reaction of 2-aminoazines, aldehydes, and diazo-compounds to form **2**. The obtained β -amino- α -diazoesters represent useful synthetic scaffolds, which can be efficiently converted into diversely substituted heterocycles, such as imidazo[1,2-*a*]pyridine and pyrido[1,2-*a*]pyrimidine-4-one, as well as into *N*-pyridyl substituted β -amino acids.

In continuation of our studies⁶ toward a multicomponent synthesis of heterocycles,⁷ we explored a three-component

For selected recent reviews on reactivity of diazo-compounds, see:
 (a) Zhao, X.; Zhang, Y.; Wang, J. Chem. Commun. 2012, 48, 10162.
 (b) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 1015. (d) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (e) Timmons, D. J.; Doyle, M. P. J. Organomet. Chem. 2001, 617–618, 98.

⁽²⁾ For a recent review on reactions of diazo-compounds as nucleophiles, see: Zhang, Y.; Wang, J. *Chem. Commun.* **2009**, 5350.

⁽⁵⁾ A single example of a low efficiency (24% yield) Ag-mediated addition of ethyl diazoacetate to a nonactivated imine was reported: Wenkert, E.; McPherson, C. A. J. Am. Chem. Soc. **1972**, *94*, 8084.

^{(6) (}a) Chernyak, N.; Gevorgyan, V. *Angew. Chem., Int. Ed.* **2010**, *49*, 2743. (b) Chernyak, D.; Chernyak, N.; Gevorgyan, V. *Adv. Synth. Catal.* **2010**, *352*, 961.

Scheme 1. Pyridine-Directed Addition of Diazo-Compounds to Imines

coupling reaction of a 2-aminopyridine, an aldehyde, and a diazoester. It was found that the reaction of the imine of 2-aminopyridine **1a** with ethyl diazoacetate in the presence of Py•TfOH (10 mol %) produced diazo-compound **2a**⁸ along with some amounts of enamine **3a**, a product of the 1,2-aryl shift (Table 1, entry 1).⁹ We considered this outcome to be quite interesting, as it represents the first efficient⁵ addition of diazo-compounds to an imine that does not possess a strong electron-withdrawing group at the N-atom.

Table 1. Optimization of the New 3-CC Reaction Conditions^a

entry	catalyst	R	t	2	3
1^b	Py•TfOH	Et	rt	56%	15%
2^b	TfOH	\mathbf{Et}	rt	45%	15%
3^b	Tf_2NH	\mathbf{Et}	rt	55%	15%
4^b	CF_3CO_2H	\mathbf{Et}	rt	_	_
$5^{b,c}$	PhP(OH) ₂	\mathbf{Et}	rt	50%	2%
6^b	Py•TfOH	<i>t</i> -Bu	rt	59%	14%
7^b	Py•TfOH	c-Hex	rt	63%	13%
8^b	Sc(OTf)3	c-Hex	rt	42%	14%
9^b	La(OTf) ₃	c-Hex	rt	63%	10%
10^b	Y(OTf) ₃	c-Hex	rt	52%	1%
11^b	Y(OTf) ₃	c-Hex	10 °C	75%	3%
12^d	Y(OTf) ₃	c-Hex	10 °C	74%	4%

^{*a*}NMR yields after 24 h. ^{*b*}2-CC reaction of imine **1a** with diazocompounds. ^{*c*}Toluene was used as a solvent. ^{*d*}3-CC reaction from 2-aminopyridine, *p*-tolualdehyde, and *c*-Hex diazoacetate.

Accordingly, optimization studies toward a more efficient formation of 2 were performed. It was found that strong acids such as TfOH (entry 2), as well as Tf₂NH (entry 3), can catalyze this reaction to produce 2a, together with a byproduct enamine 3a. Employment of weaker acids, such as CF₃CO₂H (entry 4), did not give any product, whereas the use of a phenylphosphinic acid catalyst produced the product 2a selectively, though in moderate vield only (entry 5). We found that the reaction of tert-Bu and c-Hex-diazoacetates afforded products 2b and 2c, respectively, in slightly better yields. However, formation of significant amounts of enamine 3 was observed (entries 6, 7). To our delight, the amount of enamine byproduct 3 was significantly decreased when lanthanide triflates were used (entries 8-11). After this two-component coupling (2-CC) reaction was optimized, we focused on the development of a more synthetically attractive 3-CC reaction. We found that this transformation can indeed be performed in a three-component fashion starting from an aldehyde, a 2-aminopyridine, and a c-Hex diazoacetate which forms the product **2c** in high yield (entry 12).

With optimized conditions in hand, we explored the scope of this novel 3-CC reaction. Thus, aromatic aldehydes bearing electron-donating and -neutral groups (Table 2, entries 1-7) at the *o*-, *m*-, and *p*-positions reacted smoothly. Benzaldehydes having electron-withdrawing groups, such as fluoro (entry 8), bromo (entries 9, 10), NO₂ (entry 12), and CF₃ (entry 13), produced the corresponding diazo esters in slightly lower yields (entries 8-13). In addition, an aldehyde bearing an unprotected hydroxy group (entry 11), as well as a heteroaromatic aldehvde, such as 2-thiophenecarboxaldehvde (entry 14), were tolerated under these reaction conditions. Substituted 2-aminopyridines were also competent partners for this 3-CC reaction (entries 15-18). However, the reaction of 2-aminopyridine, having an electron-withdrawing group, afforded the product in a diminished yield (entry 18). The reaction could also be performed with other 2-aminoazines, namely 2-aminopyrimidine (entry 19), and 2-aminopyrazine (entry 20), as well as with 2-aminothiazole (entry 21), producing the corresponding products in reasonable yields. In addition to diazoesters, diethyl (diazomethyl)phosphonate can also be employed to form the corresponding

⁽⁷⁾ For selected reviews on multicomponent coupling reactions, see:
(a) Multicomponent Reactions; Zhu, J., Bienaymé, H., Eds.; Wiley-VCH:
2005. (b) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed.
2011, 50, 6234. (c) Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083. (d) Synthesis of Heterocycles via Multicomponent Reactions I, II; Orru, R. V. A., Ruijter, E., Eds.; Topics in Heterocyclic Chemistry; Springer, Vol. 23, 2010.

⁽⁸⁾ The X-ray analysis of the product **2j** confirmed the presence of the diazo-group in the obtained products (see Supporting Information for details). CCDC-916523 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

⁽⁹⁾ Notably, the likely aza-Darzens aziridination reaction of imine was not observed. For Py•TfOH-catalyzed aziridination of imines with diazocompounds, see: (a) Bew, S. P.; Carrington, R.; Hughes, D. L.; Liddle, J.; Pesce, P. *Adv. Synth. Catal.* **2009**, *351*, 2579. For Ln(OTf)₃-catalyzed aziridination of imines with diazocompounds, see: (b) Nagayama, S.; Kobayashi, S. *Chem. Lett.* **1998**, 685. (c) Xie, W.; Fang, J.; Li, J.; Wang, P. G. *Tetrahedron* **1999**, *55*, 12929.

Table 2. Scope of the New 3-CC Reaction^a

^a Unless otherwise noted: aldehyde (1 equiv), 2-aminoazine (1.1 equiv), diazo-compound (1.2 equiv), Y(OTf)₃ (10%), and MS 4 Å (125 mg/mmol) in CH₂Cl₂ (0.3 M). ^b Preformed imine was used. ^c See ref 10.

 β -amino- α -diazo-compounds **2v**, w efficiently (entries 22) and 23). In general, the reaction shows high functional group tolerance with respect to all three components. Notably, aryl amines without a nitrogen atom at the α -position of the ring, such as aniline as well as 3- and 4-aminopyridines, do not produce detectable amounts of the corresponding diazo-products (entry 24).¹⁰

We rationalize these observations in the following way (Scheme 2). First, the formed Y(III)-activated imine A undergoes a nucleophilic attack by the diazo-compound to produce zwitterion \mathbf{B}/\mathbf{C} . It is likely that the nitrogen atom of the pyridine ring serves as an intramolecular proton shuttle. Thus, deprotonation in B/C by the pyridine N-atom leads to diazo-intermediate D, producing diazocompound 2 upon release of a Y(III)-catalyst and tautomerization process. Therefore, the overall process can be

Scheme 2. Proposed Mechanism of New 3-CC Reaction

considered as a pyridine group assisted addition of diazocompounds to imines. This mechanism is in good agreement

⁽¹⁰⁾ For 3-CC reaction attempts employing aniline as well as 3- and 4-aminopyridines, see Supporting Information.

with the fact that aniline, as well as 3- and 4-aminopyridines, which do not possess a properly situated *N*-atom, do not undergo this addition reaction (Table 2, entry 24).¹⁰

The obtained azine-containing β -amino- α -diazo-compounds **2** represent a versatile scaffold for various types of transformations. Thus, exploring the carbene reactivity of the obtained molecules, we found that diazoester **2c** (**R** = CO₂*c*-Hex) could undergo a selective 1,2-hydride shift¹¹ in the presence of AgBF₄ (5 mol %) to produce enamine **4**.¹² Interestingly, the corresponding α -diazoethylposphonate **2v** (**R** = PO(OEt)₂), under these reaction conditions, underwent an exclusive 1,2-aryl shift to form the enamine product **5**.^{3c}

Scheme 3. Synthetic Applications of Diazo-Compounds 2 1,2-H shift 1,2-Ar shift _{Tol} E *E*:*Z* = 1.7:1 AgBF₄ (5 mol %) THF, rt PO(OEt) H ŕο 4.76% 5.75% R = CO₂c-He $R = PO(OEt)_2$ Pd/C (5 mol %) H₂ (balloon) THE rt 6 72% 2 R = CO₂c-Hex a) AgBF₄ (5 mol %), a) AαBF₄ (5 mol %) b) La(OTf)3 (5 mol %) b) NIS (2 equiv) THF/MeOH, rt THF, rt one po Tol CO₂c-Hex via 4 R = CO₂c-Hex 7.75% 8,82%

In addition, hydrogenation of the diazo-group of 2c efficiently converted it to β -amino acid derivative 6. The synthetic usefulness of the diazo-compounds 2 was further demonstrated in an efficient one-pot synthesis of *N*-fused heterocycles via cyclization of the in situ formed enamine 4.

Scheme 4. Proposed Mechanism for Formation of 8

Thus, in the presence of La(OTf)₃, it underwent lactamization into pyrido[1,2-a]pyrimidine-4-one 7. On the other hand, NIS-mediated cyclization converted 4 into imidazo-[1,2-a]pyridine 8 (Scheme 3). Presumably, the cyclization of 4 into 8 proceeds via intramolecular attack of the pyridine nitrogen at the double bond of the enamine activated by an electrophilic agent, followed by a subsequent elimination and a tautomerization process (Scheme 4).

In conclusion, we have developed a novel three-component coupling reaction of 2-aminoazines, aromatic aldehydes, and diazo compounds producing β -amino- α -diazoesters. This reaction features an unprecedented heterocycle-assisted addition of a diazocompound to an imine. The obtained β -amino- α -diazoesters represent an important polyfunctional synthetic scaffold suitable for useful transformations. Thus, the obtained diazo-compounds could be efficiently converted into valuable heterocyclic molecules such as imidazo[1,2-*a*]-pyridines and pyrido[1,2-*a*]pyrimidine-4-ones, as well as β -(2-pyridyl)-amino acid derivatives.

Acknowledgment. We thank the National Institutes of Health (GM-64444 and 1P50 GM-086145) for financial support of this work. We thank Prof. V. H. Rawal and Prof. S. Kozmin (University of Chicago) for fruitful discussions.

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹¹⁾ For 1,2-migrations in β -amino- α -diazoesters, see: (a) Jiang, N.; Wang, J. Synlett **2002**, 149. (b) Jiang, N.; Ma, Z.; Qu, Z.; Xing, X.; Xie, L.; Wang, J. J. Org. Chem. **2003**, 68, 893. (c) Shi, W.; Jiang, N.; Zhang, S.; Wu, W.; Du, D.; Wang, J. Org. Lett. **2003**, 5, 2243. (d) Shi, W.; Xiao, F.; Wang, J. J. Org. Chem. **2005**, 70, 4318. (e) Xu, F.; Zhang, S.; Wu, X.; Liu, Y.; Shi, W.; Wang, J. Org. Lett. **2006**, 8, 3207. (f) Xiao, F.; Wang, J. J. Org. Chem. **2006**, 71, 5789. See also refs 3a, 3c, 3d.

⁽¹²⁾ See Supporting Information for full optimization results.

The authors declare no competing financial interest.