FULL PAPER

Nano-Cu₂O-Catalyzed Formation of C-C and C-O Bonds: One-Pot Domino Process for Regioselective Synthesis of α-Carbonyl Furans from Electron-Deficient Alkynes and 2-Yn-1-ols

Hua Cao, Huanfeng Jiang,* Gaoqing Yuan, Zhengwang Chen, Chaorong Qi, and Huawen Huang^[a]

Abstract: The formation of carboncarbon and carbon-oxygen bonds continues to be an active and challenging field of chemical research. Nanoparticle catalysis has attracted considerable attention owing to its environmentally benign and high activity toward the reactions. Herein, we described a novel and effective nano-Cu₂O-catalyzed one-pot domino process for the regioselective synthesis of α -carbonyl furans.

Introduction

Transition-metal-catalyzed domino reactions are versatile tools for the preparation of complex and diverse heterocyclic compounds from readily accessible starting materials in a single operation under mild conditions.^[1] The protocol to achieve this goal is a critical part of much organic synthesis and remains a continuing challenge that reflects the growing needs for the pharmaceutical, food, and agricultural industries. In the past few years, organic chemists have been expected not only to design new chemical reactions for the formation of carbon–carbon and carbon–oxygen bonds but also to improve the catalyst systems to maximize resource utilization and to decrease waste, especially for environmental health and safety. Hence, the search for an inexpensive, environmentally friendly, and nontoxic catalyst system for the

[a] H. Cao, Prof. H. Jiang, Prof. G. Yuan, Z. Chen, C. Qi, H. Huang School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 (P.R. of China) Fax: (+86)20-87112906 E-mail: jianghf@scut.edu.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201000807.

Various electron-deficient alkynes with 2-yn-1-ols underwent this process smoothly in moderate to good yields in the presence of air at atmospheric pressure. It is especially noteworthy that a novel 2,4,5-trisubstituted 3-ynylfuran

Keywords: copper • domino reactions • furans • nanoparticles • regioselective synthesis was formed in an extremely direct manner without tedious stepwise synthesis. Additionally, as all of the starting materials are readily available, this method may allow the synthesis of more complex α -carbonyl furans. An experiment to elucidate the mechanism suggested that the process involved a carbene intermediate.

formation of carbon-carbon and carbon-oxygen bonds is a major objective.^[2]

In this context, nanoparticle catalysts have been widely investigated^[3] and have shown good catalytic activities due to their high surface areas and reactive morphologies.^[4] In comparison with homogeneous catalysts, heterogeneous catalysts have advantages with respect to product and catalyst isolation, catalyst reuse, operational handling, and environmental considerations.^[5] Also, there has been increasing emphasis on the use and development of environmentally friendly solid-catalyst systems to reduce the amount of toxic waste.^[6] Therefore, more and more organic-synthesis chemists have focused much of their attention on the application of nanoscience and technology, such as organic transformations and nanocatalysts.^[7]

Furans are important fine chemicals that exhibit a wide range of biological activities,^[8] and many naturally occurring compounds^[9] contain the furan skeleton as a key structural unit, such as pseudopterolide A^[10] and kallolide A^[11]. It should be noted that α -carbonyl furans have been extensively used as building blocks for the synthesis of more elaborate heterocyclic compounds (Scheme 1).^[12] Although several transition-metal-catalyzed reactions have been reported for the synthesis of furan derivatives during the last few years,^[13] there has only been a rare example for the synthe-

Chem. Eur. J. 2010, 16, 10553-10559

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

View this journal online at wileyonlinelibrary.com

- 10553

Scheme 1. a) General method for the synthesis of the natural product (–)-epi-swainsonine from furan-2-carbaldehyde. b) Synthesis of useful intermediate pyranones from furan-2-carbaldehydes. BH₃–DMS: borane–dimethylsulfide; DMAP: 4-dimethylaminopyridine; NBS: *N*-bromosuccinimide; RT: room temperature; TBABr: tetrabutylammonium bromide; TBS: *tert*-butyldimethylsilyl; THF: tetrahydrofuran; TsCl: toluene-4-sulfonyl chloride.

sis of α -carbonyl furans.^[14] Therefore, the design and development of a new method to synthesize α -carbonyl furans is essential.

Very recently, we reported a novel one-pot CuI-catalyzed domino process for the regiospecific synthesis of highly functionalized polysubstituted furans (Scheme 2).^[15] Un-

Scheme 2. CuI-catalyzed synthesis of an α -carbonyl furan. DABCO: 1,4diazabicyclo[2.2.2]octane; DMF: *N*,*N*-dimethylformamide.

fortunately, this domino process cannot take place when ethyl phenylpropionate was employed as the substrate to replace diethyl but-2-ynedioate (Scheme 3). In addition, it is needful to probe the proposed mechanism. To solve these problems, we first broadened the range of catalysts to inves-

Scheme 3. Synthesis of the furan from 1a and 2a cannot be completed.

tigate their activity, and we found that Cu_2O nanoparticles can be utilized as an effective heterocatalyst to accomplish the reaction through the formation of carbon–carbon and carbon–oxygen bonds. Herein, we report the successful extension of the scope of this new catalytic system to various electron-deficient alkynes with 2-yn-1-ols by using air oxidation under atmospheric pressure and we disclose a novel and effective method for the synthesis of α -carbonyl furans.

Results and Discussion

Based on our previous work, we focused on searching for different catalysts and suitable reaction conditions (Table 1) by using **1a** and **2a** as the starting materials. In a typical pro-

Table 1. Optimization of the reaction conditions.[a]

$$\begin{array}{c} CO_2Et \\ \parallel & + \\ Ph & HO \end{array} \xrightarrow{PBu_3} \underbrace{cat.}_{Ph} \xrightarrow{EtO_2C} \\ Ph & HO \end{array}$$

Entry	Catalyst	Air/O ₂ (pressure [atm])	Т [°С]	Yield [%] ^[b]
1	5 mol% CuI	air	80	-
2	5 mol % Cu ₂ O	air	80	< 5
3	5 mol % Cu ₂ O	air	120	< 5
4	5 mol % Ru ₃ (CO) ₁₂	air	80	_
5	5 mol % PdCl ₂	air	80	_
6	5 mol % Pd(OAc) ₂	air	80	-
7	5 mol % Pd(dba) ₂	air	80	_
8	5 mol % NiSO ₄	air	80	trace
9	5 mol% nano-Cu2O	air	80	62
10	5 mol % nano-Cu ₂ O	$O_{2}(1)$	80	67
11	5 mol% nano-Cu2O	$O_2(3)$	80	46
12	5 mol % nano-Cu2O	$O_{2}(5)$	80	41
13	10 mol% nano-	$O_{2}(5)$	80	58
	Cu ₂ O			
14	10 mol% nano-	$O_{2}(1)$	80	69
	Cu ₂ O			
15	10 mol % nano-	air	80	68
	Cu ₂ O			
16	10 mol % nano-	air	100	65
	Cu ₂ O			
17	10 mol% nano-	air	50	75
	Cu ₂ O			
18	10 mol% nano-	air	RT	-
	Cu ₂ O			

[a] dba: trans,trans-dibenzylideneacetone. [b] Yields determined by GC analysis.

cedure, **1a** (0.5 mmol), **2a** (0.5 mmol), and PBu₃ were stirred in CH₂Cl₂ at room temperature.^[16] The solution was then evaporated to dryness under reduced pressure. Subsequently, a variety of catalysts were examined. As shown in Table 1, the desired product **3aa** could not be formed by using CuI as the catalyst (Table 1, entry 1). It was found that the desired product was detected when CuI was substituted by Cu₂O (Table 1, entry 2). We then assumed that an increase of temperature may influence the production of **3aa**. However, it was observed that the yield of **3aa** did not change significantly, even at 120 °C (Table 1, entry 3). Other late-transition-metal catalysts, such as $Ru_3(CO)_{12}$, PdCl₂, Pd-(OAc)₂, Pd(dba)₂, and NiSO₄ (Table 1, entries 4–8), were employed; no conversion was observed in these cases. Stimulated by the result that Cu₂O could catalyze the reaction, we attempted to prepare Cu₂O nanoparticles. According to previous reports,^[17] Cu₂O microcrystals were synthesized by a simple hydrothermal method. The formation of the nano-Cu₂O particles was confirmed by XRD (Figure 1 a) and SEM analysis (Figure 2).

Figure 1. a) XRD pattern of Cu_2O particles. b) XRD pattern of nano-Cu₂O particles after undergoing the reaction twice.

Figure 2. SEM image of the nano-Cu₂O particles.

Surprisingly, the yield of **3aa** dramatically increased to 62% (Table 1, entry 9) when nano-Cu₂O particles (5 mol %) were tested in DMF under atmospheric pressure. We then tried to improve the yields by using oxygen instead of air and by increasing the oxygen pressure (Table 1, entries 10–

FULL PAPER

12). It was found that the yield increased to 67% when O_2 at 1 atm was used (Table 1, entry 10). However, when higher pressure O_2 was used (Table 1, entries 11 and 12), the yield decreased gradually, which indicated that the nano-Cu₂O particles were oxidized to CuO at high oxygen pressure. Inspired by the above results, we attempted to change the amount of catalyst to improve the yield of **3aa**. The results showed that moderate yields were obtained by using 10 mol% of nano-Cu₂O particles (Table 1, entries 13–16). Interestingly, a good yield was achieved by using 10 mol% of nano-Cu₂O particles under 1 atm of air at 50°C (Table 1, entry 17). Subsequently, we turned our attention to catalyst reuse. It is noteworthy that 65% yield was maintained even when the catalyst was reused twice.

Next, under the optimized reaction conditions (Table 1, entry 17), the reactions of a number of electron-deficient alkynes with 2-yn-1-ols were examined (Table 2). We discovered that the reactions between ethyl phenylpropionate (1a) and differently substituted 2-yn-1-ols (R³ is H, CH₃, phenyl, m-tolyl, 4-methoxyphenyl, 4-nitrophenyl, 2-pyridyl, 2-thiophenyl) were successful, and the corresponding products (3aa-3ah) were obtained in good yields in most cases (Table 2, entries 1-8). These results indicated that this domino reaction tolerates functional groups at different positions of the aromatic ring. There was no effect on this transformation from either electron-rich or electron-withdrawing groups on the aromatic ring. Notably, no other regioisomers were detected, which indicated that this cyclization was regioselective and chemoselective. To further expand the scope of this methodology, other electron-deficient alkynes, 1b-1d, were surveyed. The results showed that ethyl but-2-ynoate and aryl alkynyl ketones were also tolerated under the reaction conditions and afforded the corresponding products in good yields (Table 2). The molecular structure of representative product 3cc was determined by X-ray crystallography (Figure 3).

As an extension of the above study, we continued to investigate the scope of this transformation by using diethyl

Figure 3. X-ray crystal structure of compound 3cc.

www.chemeurj.org

CHEMISTRY

A EUROPEAN JOURNAL

Table 2. Nano-Cu₂O-catalyzed synthesis of α -carbonyl furans.

COR ¹ PBu ₃ nano-Cu ₂ O R ¹ OC R ³					
	+ $ $ C $ $ $ $ C	H ₂ Cl ₂ /RT DMF/50	°C R ² O CHO		
Entry	Alkyne	2-Yn-1-ol	Product	Yield [%] ^[a]	
			EtO ₂ C		
1	ethyl 3-phenyl- propionate (1a)	prop-2-yn-1-ol (2 a)	Ph	71	
			3aa		
2	1a	but-2-yn-1-ol (2b)	Ph O CHO	67	
			3ab		
3	1a	3-phenylprop- 2-yn-1-ol (2c)	Ph O CHO	63	
			3ac		
4	1a	3- <i>m</i> -tolyl- prop-2-yn-1-ol (2 d)	EtO ₂ C CHO	68	
			Pri () 3ad		
			OMe		
5	1a	3-(4-methoxy- phenyl)-prop- 2-yn-1-ol (2e)	EtO ₂ C Ph O CHO	65	
			3ae		
6	1a	3-(4-nitro- phenyl)- prop-2-yn-1-ol (2 f)	EtO ₂ C Ph O CHO	66	
			3af		
7	1a	3-(pyridin-2- yl)-prop-2-yn- 1-ol (2g)	EtO ₂ C	69	
			3ag		
8	1a	3-(thiophen-2- yl)-prop-2-yn- 1-ol (2h)	EtO ₂ C Ph O CHO	62	
		()	2ab		
9	ethyl but-2- ynoate (1b)	2 b		60	
			3bb		
10	1,3-di- <i>p</i> -tolyl- prop-2-yn-1-one (1c)	2a	СНОСНО	67	
			Зса		

Alkyne	2-Yn-1-ol	Product	Yield [%] ^[a]
1c	2 b	СНО	73
1¢	2 c	о С С НО Зсс	70
1,3-diphenyl- prop-2-yn-1-one (1d)	2a	Ph O Ph O CHO	68
1 d	2 b	3da Ph O Ph O CHO	73
1 d	2 c	3db Ph O Ph Ph CHO	71
1d	2e	3dc OCH ₃ O Ph O CHO	71
1d	2 f	3de NO ₂ Ph Ph O CHO	67
		3df Ph S O≪↓↓↓	
	Alkyne 1c 1c 1,3-diphenyl- prop-2-yn-1-one (1d) 1d 1d 1d 1d 1d	Alkyne2-Yn-1-ol1c2b1c2c1,3-diphenyl- prop-2-yn-1-one (1d)2a1d2b1d2c1d2c1d2c	Alkyne2-Yn-1-olProduct1c2b $\int_{i} \int_{i} \int_{i$

but-2-ynedioate (1e) as a substrate. As indicated in Table 3, in contrast to 1a–1d, diethyl but-2-ynedioate (1e) gave the corresponding rearrangement products with good yields only upon initiation by DABCO. Interestingly, more sterically hindered *ortho*-substituted substrates such as 2i or 2j afforded the corresponding products in relatively higher yields when the nano-Cu₂O particles were employed as the catalytic system to substitute CuI in DMF (Table 3, entries 4 and 5).^[15] Other substrates can also obtain good yields under the

10556 www.chemeurj.org

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2010, 16, 10553-10559

Table 3. Nano-Cu₂O-catalyzed formation of furans from diethyl but-2-ynedioate (1e) with different 2-yn-1-ols.

Entry	2-Yn-1-ol	Product	Yield [%] ^[a]
1	2a	3ea	80
2	2 d	3ed	67
3	2 h	3 eh	72
4	3-o-tolylprop-2-yn-1-ol (2i)	3 ei	65 (52) ^[b]
5	3-(2-methoxyphenyl)-prop-2-yn-1-ol (2j)	3 ej	63 (45) ^[b]
6	methyl 4-(3-hydroxyprop-1-ynyl)-benzoate	3 ek	72
	(2k)		
7	3-(2-fluorophenyl)-prop-2-yn-1-ol (21)	3 el	66
8	3-(4-ethylphenyl)-prop-2-yn-1-ol (2m)	3 em	73
9	hept-4-yn-3-ol (2n)	3 en	65
10	1-phenylhex-1-yn-3-ol (20)	3 eo	66

[a] Yields of isolated products. [b] See reference [15].

Scheme 4. Synthesis of regioisomeric furans. [a] Isolated yields and the ratio was determined by ¹H NMR spectroscopy.

optimal conditions. It was evident that the nano- Cu_2O particles were an effective catalyst for this domino reaction.

The ketone substrates 3phenyl-1-(thiophen-2-yl)prop-2yn-1-one (1f) and 3-phenyl-1-ptolylprop-2-yn-1-one (1g) were also examined and this sequence ran very well (Scheme 4). Interestingly, we found that a pair of isomeric furans was observed and high yields of products were ob-

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

tained under the optimized reaction conditions. This result demonstrated that regioisomers would be produced because the two carbonyl groups in complex D (see below) were both active in the following cyclization reaction.

FULL PAPER

Finally, the generality of this transformation was also investigated by using 5-phenylpenta-2,4-diyn-1-ol (**2p**) and 5*p*-tolylpenta-2,4-diyn-1-ol (**2q**; Scheme 5). Interestingly, the desired products **3ap**, **3cp**, **3eq**, and **3hp** were formed in 42, 45, 49, and 51% yields, respectively, when **1a**, **1c**, **1e**, and **1h** reacted with **2p** or **2q**. It was especially noteworthy that these novel 2,4,5-trisubstituted 3-ynylfurans were formed in an extremely direct manner without tedious stepwise synthesis.

Mechanism

To gain further insight into the mechanism of this novel conversion, we envisioned the possibility of trapping the intermediates of the reaction. Recently, Hofmann et al.^[18] have reported the carbene dimer through the reaction of the copper(I) carbene with nucleophilic diazo compounds. Stimulated by this novel result, we tried to trap copper carbene by using ethyl 2-diazoacetate (EDA; Scheme 6). 1a (0.5 mmol), 2a (0.5 mmol), and DABCO (0.05 mmol) in CH₂Cl₂ were stirred for 15 min at room temperature. The solution was then evaporated and DMF (3 mL) containing nano-Cu₂O particles (0.3 mmol) was added at 50 °C. Subsequently, EDA (0.8 mmol) was added. Interestingly, vinyl furan 5 was observed. However, when 3ea was used as a substrate, compound 5 could not be detected by GC-MS (Scheme 7). These results indicated that a copper carbene complex was possibly formed during this domino process.

To investigate the possible hydrogen migration of the reaction, an experiment was performed with deuterium-labeled prop-2-yn-1-ol at 50 °C catalyzed by nano-Cu₂O particles (Scheme 8). Compounds **3aD and 4aD** were not observed as the products, which indicated that the D atom can't migrate to the C4 and C6 positions and is only eliminated by water.

Scheme 5. Synthesis of 2,4,5-trisubstituted 2-ynylfurans from 2,4-diyn-1-ols. [a] Isolated yields.

Chem. Eur. J. 2010, 16, 10553-10559

A EUROPEAN JOURNAL

Scheme 6. Formation of compound 5.

Scheme 7. Unsuccessful reaction of 3ea with EDA.

Scheme 8. Deuterium labeling experiment.

On the basis of above experimental results, a plausible reaction mechanism is shown in Scheme 9. DABCO- or PBu₃promoted nucleophilic addition of propargyl alcohol to electron-deficient alkynes formed enyne adduct **A**. A 6-*endo*-dig addition of the enol ether onto the copper(I)–alkyne complex **B** resulted in the formation of intermediate **C**, which collapsed into the β -allenic ketone **D**.^[19] Complex **D** then

Scheme 9. Proposed mechanism.

10558

www.chemeurj.org

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

underwent cyclization, a [1,3] hydrogen shift, and oxidation to form **E** and **E**'.^[20] The two carbonyl groups in complex **D** were both active in the following cyclization reaction, so carbene complexes **E** and **E**' would be produced by different attack directions (paths I and

II) in the presence of a copper catalyst and air. Subsequently, carbene complexes \mathbf{E} and \mathbf{E}' underwent carbene oxidation^[21] with oxygen metathesis to give **3** and **4** as the desired products.

Conclusion

In summary, we have reported an unprecedented nano-Cu₂Ocatalyzed synthesis of α -carbonyl furans through a cyclization/ rearrangement/oxidation sequence of 1,5-enynes. This catalytic system is environmentally benign and an effective domino process for the formation of C-

C and C–O bonds in modern organic chemistry. It is especially noteworthy that this domino process is applicable to a number of electron-deficient alkynes. Furthermore, our findings open a convenient synthetic route to a variety of α -carbonyl furans, which are useful synthetic intermediates for bioactive and natural compounds. The domino reaction exhibits some unusual characteristics that are difficult to understand at this time and that will be an interesting subject of mechanistic studies in the future. Hopefully, this research has established a useful starting point for the investigation of future applications of the nanoparticle-catalyzed synthesis of furans.

Experimental Section

General procedure for the synthesis of ethyl 5-formyl-2-phenylfuran-3carboxylate: Ethyl phenylpropionate (1a; 0.5 mmol), prop-2-yn-1-ol (2a; 0.5 mmol), and PBu₃ (0.05 mmol) were stirred in CH₂Cl₂ for 30 min at room temperature. The solution was then evaporated to dryness under reduced pressure. Subsequently, DMF and nano-Cu₂O particles were added at 50 °C. After completion of the reaction (monitored by TLC), water (8 mL) was added. The aqueous solution was extracted with diethyl ether (3×8 mL) and the combined extracts were dried with anhydrous MgSO₄. The solvent was removed and the crude product was separated by column chromatography to give a pure sample of **3aa**: IR (KBr): \tilde{v} = 2921, 2853, 1683, 1216, 766 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ = 9.66 (s, 1H), 8.06–8.08 (m, 2H), 7.64 (s, 1H), 7.45–7.47 (m, 3H), 4.31 (q, *J*= 7.2 Hz, 2H), 1.33 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ =177.4, 162.2, 161.5, 150.2, 131.0, 129.1, 128.3, 128.2, 123.8, 116.1, 61.2, 14.1 ppm; HRMS (EI): *m/z* calcd: 244.0736; found: 244.0732.

Acknowledgements

We thank the National Natural Science Foundation of China (grant nos. 20625205, 20772034, and 20932002) and the Doctoral Fund of the Ministry of Education of China (20090172110014) for financial support.

- [1] a) S. L. Schreiber, Science 2000, 287, 1964–1966; b) B. M. Trost, Angew. Chem. 1995, 107, 285–307; Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281; c) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; d) D. Enders, C. Grondal, M. R. Hüttl, Angew. Chem. 2007, 119, 1590–1601; Angew. Chem. Int. Ed. 2007, 46, 1570–1581; e) S. Ikeda, Acc. Chem. Res. 2000, 33, 511–519; f) A. de Meijere, P. Zezschwitz, S. Bräse, Acc. Chem. Res. 2005, 38, 413–422; g) R. Stragies, S. Blechert, J. Am. Chem. Soc. 2000, 122, 9584–9591; h) D. Enders, C. Wang, J. W. Bats, Angew. Chem. 2008, 120, 7649–7653; Angew. Chem. Int. Ed. 2008, 47, 7539–7542; i) G. Nordmann, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 4978–4979; j) D. J. Cárdenas, B. Martín-Matute, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 5033–5040; k) M. Marigo, T. Schulte, J. Franzén, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 15710–15711; l) Y. Luo, Z. Li, C. J. Li, Org. Lett. 2005, 7, 2675–2678.
- [2] a) V. Polshettiwar, R. S. Varma, Acc. Chem. Res. 2008, 41, 629–639;
 b) W. Leitner, Acc. Chem. Res. 2002, 35, 746–756; c) P. T. Anastas,
 M. M. Kirchhoff, Acc. Chem. Res. 2002, 35, 686–694; d) C. J. Li,
 Acc. Chem. Res. 2009, 42, 335–344.
- [3] a) R. Martínez, D. J. Ramón, M. Yusa, Adv. Synth. Catal. 2008, 350, 1235–1240; b) G. S. Fonseca, E. T. Silveira, M. A. Gelesky, J. Dupont, Adv. Synth. Catal. 2005, 347, 847–853; c) M. Lakshmia Kantam, K. B. S. Kumar, C. Sridhar, Adv. Synth. Catal. 2005, 347, 1212–1214.
- [4] a) V. Polshettiwar, R. S. Varma, Org. Biomol. Chem. 2009, 7, 37–40;
 b) A. Saha, D. Saha, B. C. Ranu, Org. Biomol. Chem. 2009, 7, 1652–1657;
 c) K. Sayo, S. Deki, S. Hayashib, J. Mater. Chem. 1999, 9, 937–942;
 d) B. M. Choudary, K. Jyothi, M. Roy, M. L. Kantam, B. Sreedhar, Adv. Synth. Catal. 2004, 346, 1471–1480.
- [5] a) C. J. Mortko, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2005, 127, 7994–7995; b) N. Yan, C. Zhao, C. Luo, P. J. Dyson, H. Liu, Y. Kou, J. Am. Chem. Soc. 2006, 128, 8714–8715.
- [6] a) L. Lia, J. Shi, Adv. Synth. Catal. 2008, 350, 667–672; b) B. Z. Zhan, M. A. White, T. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, T. S. Cameron, J. Am. Chem. Soc. 2003, 125, 2195–2199.
- [7] a) V. Polshettiwar, R. S. Varma, *Chem. Soc. Rev.* 2008, *37*, 1546–1557; b) V. Polshettiwar, R. S. Varma, *J. Org. Chem.* 2008, *73*, 7417–7419; c) V. Polshettiwar, R. S. Varma, *J. Org. Chem.* 2007, *72*, 7420–7422; d) Y. Ju, R. S. Varma, *J. Org. Chem.* 2006, *71*, 135–141; e) V. Polshettiwar, B. Baruwati, R. S. Varma, *Green Chem.* 2009, *11*, 127–131.
- [8] a) M. D. Mullican, R. J. Sorenson, D. T. Connor, D. O. Thueson, J. A. Kennedy, M. C. Conroy, J. Med. Chem. 1991, 34, 2186–2194;
 b) B. L. Flynn, E. Hamel, M. K. Jung, J. Med. Chem. 2002, 45, 2670–2673;
 c) I. Francesconi, W. D. Wilson, F. A. Tanious, J. E. Hall, B. C. Bender, R. R. Tidwell, D. McCurdy, D. W. Boykin, J. Med. Chem. 1999, 42, 2260–2265;
 d) D. Giardinà, M. Crucianelli, R. Romanelli, A. Leonardi, E. Poggesi, C. Melchiorre, J. Med. Chem. 1996, 39, 4602–4607;
 e) S. M. Rahmathullah, J. E. Hall, B. C. Bender, D. R. McCurdy, R. R. Tidwell, D. W. Boykin, J. Med. Chem. 1999, 42, 3994–4000;
 f) K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J. E. Hall, R. R. Tidwell, A. Kumar, M. Bajic, D. W. Boykin, J. Med. Chem. 1998, 41, 3872–3878;
 g) M. L. Bolognesi, R.

Budriesi, A. Chiarini, E. Poggesi, A. Leonardi, C. Melchiorre, J. Med. Chem. **1998**, 41, 4484–4853;h) D. S. Mortensen, A. L. Rodriguez, K. E. Carlson, J. Sun, B. S. Katzenellenbogen, J. Katzenellenbogen, J. Med. Chem. **2001**, 44, 3838–3848.

- [9] a) S. Cacchi, J. Organomet. Chem. 1999, 576, 42–64; b) X. L. Hou,
 H. Y. Cheung, T. Y. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong, H. N. C.
 Wong, Tetrahedron 1998, 54, 1955–2020.
- [10] a) M. M. Bandurraga, F. William, S. F. Donovan, J. Clardy, J. Am. Chem. Soc. 1982, 104, 6463–6465; b) J. A. Marshall, L. M. McNulty, D. Zou, J. Org. Chem. 1999, 64, 5193–5200; c) J. A. Marshall, J. Liao, J. Org. Chem. 1998, 63, 5962–5970; d) J. A. Marshall, E. M. Wallace, J. Org. Chem. 1995, 60, 796–797.
- [11] J. A. Marshall, W. J. DuBay, J. Org. Chem. 1994, 59, 1703-1708.
- [12] a) K. Cheng, A. R. Kelly, R. A. Kohn, J. F. Dweck, P. J. Walsh, Org. Lett. 2009, 11, 2703–2706; b) J. N. Abrams, R. S. Babu, H. Guo, D. Le, J. Le, J. M. Osbourn, A. G. Doherty, J. Org. Chem. 2008, 73, 1935–1940; c) A. Fürstner, T. Nagano, J. Am. Chem. Soc. 2007, 129, 1906–1907.
- [13] a) B. Xu, G. B. Hammond, J. Org. Chem. 2006, 71, 3518–3521; b) M. Zhang, H. F. Jiang, H. Neumann, M. Beller, P. H. Dixneuf, Angew. Chem. 2009, 121, 1709–1712; Angew. Chem. Int. Ed. 2009, 48, 1681–1684; c) S. M. Ma, J. L. Zhang, J. Am. Chem. Soc. 2003, 125, 12386–12387; d) C. Jung, J. C. Wang, M. J. Krische, J. Am. Chem. Soc. 2004, 126, 4118–4119; e) T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 11164–11165; f) S. Ma, L. Li, Org. Lett. 2000, 2, 941–944; g) Y. Hu, Y. Zhang, Z. Yang, R. Fathi, J. Org. Chem. 2002, 67, 2365–2368; h) Y. Xiao, J. Zhang, Angew. Chem. 2008, 120, 1929–1932; Angew. Chem. Int. Ed. 2008, 47, 1903–1906.
- [14] J. Barluenga, L. Riesgo, R. Vicente, L. A. López, M. Tomás, J. Am. Chem. Soc. 2008, 130, 13528–13529.
- [15] H. Cao, H. F. Jiang, W. J. Yao, X. H. Liu, Org. Lett. 2009, 11, 1931– 1933.
- [16] J. Inanaga, Y. Baba, T. Hanamoto, Chem. Lett. 1993, 241-244.
- [17] a) H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B 2006, 110, 13829–13834; b) Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li, Nano Lett. 2007, 7, 3723–3728; c) X. Liang, L. Gao, S. Yang, J. Sun, Adv. Mater. 2009, 21, 14; d) Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, J. Phys. Chem. A 2009, 113, 14448–14453.
- [18] P. Hofmann, I. V. Shishkov, F. Rominger, *Inorg. Chem.* 2008, 47, 11755–11762.
- [19] a) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978–15979; b) J. W. Grissom, D. Kilingberg, B. J. Huang, J. Org. Chem. 1997, 62, 603–626; c) C. Nevado, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627–2635.
- [20] a) M. Gómez-Gallego, M. J. Mancheño, M. A. Sierra, Acc. Chem. Res. 2005, 38, 44–53; b) D. F. Harvey, D. M. Sigano, Chem. Rev. 1996, 96, 271–288; c) M. A. Sierra, Chem. Rev. 2000, 100, 3591– 3637.
- [21] a) B. M. Trost, Y. H. Rhee, J. Am. Chem. Soc. 1999, 121, 11680–11683; b) D. Perdicchia, E. Licandro, S. Maiorana, B. Vandoni, C. Baldoli, Org. Lett. 2002, 4, 827–830; c) J. Barluenga, F. Andina, M. A. Fernández-Rodríguez, P. García-García, I. Merino, E. Aguilar, J. Org. Chem. 2004, 69, 7352–7354; d) C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838–5839; e) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704–724.

Received: March 31, 2010 Revised: May 14, 2010 Published online: June 30, 2010

FULL PAPER