Asymmetric Hydrogenation of α , β -Unsaturated Ester-Phosphonates

Yange Huang,^a Florian Berthiol,^a Bart Stegink,^a Michael M. Pollard,^{a,b} and Adriaan J. Minnaard^{a,*}

^a Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands Fax: (+31)-50-363-4296; phone: (+31)-50-363-4258; e-mail: A.J.Minnaard@rug.nl

^b Current address: Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Received: January 23, 2009; Published online: May 27, 2009

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.200900051.

Abstract: The rhodium-catalyzed asymmetric hydro- genation of readily available α , β -unsaturated ester-	applied in the synthesis of physiologically active compounds.		
phosphonates affords the corresponding α -chiral			
phosphonates in excellent yield and ee. The resulting	Keywords: asymmetric hydrogenation; homogeneous		
products are useful multifunctional building blocks	catalysis; phosphonates; rhodium		

Introduction

Compounds containing phosphonic acids and alkyl phosphonates are frequently encountered in the field of medicinal chemistry.^[1] As phosphonic acids and phosphonates act as isosteres of carboxylic acids and esters, respectively, these functional groups are employed to improve the activity or availability of physiologically active compounds. In addition, phosphonic acids act as non-hydrolyzable phosphate mimics.^[2]

Phosphonate analogues of glutamic acid are being studied in the treatment of diseases of the central nervous system such as Huntington's disease and Par-

Figure 1. The natural substrate of 1-deoxy-D-xylulose 5-phosphate reducto-isomerase and its corresponding phosphonate inhibitors.

Adv. Synth. Catal. 2009, 351, 1423-1430

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

kinson's disease because of their enhanced selectivity for glutamate receptors.^[3] In addition, phosphonates are excellent chelators of calcium and magnesium, and as such they find application in the treatment of osteoporosis, bone cancer and calcium metabolism.^[4]

Fosmidomycin (Figure 1) is an effective inhibitor of 1-deoxy-D-xylulose 5-phosphate reducto-isomerase.^[5] A derivative of fosmidomycin, FR900098, is currently on the market as a drug against malaria. It has been shown recently, however, that fosmidomycin analogues substituted next to the phosphonic acid moiety are more active than fosmidomycin itself.^[6] As these derivatives were tested as racemates, it would be very interesting to study their single enantiomers.

Whereas the asymmetric synthesis of α -amino- and α -hydroxy-phosphonates has been thoroughly studied because of their structural resemblance to amino acids and hydroxy acids, the asymmetric synthesis of other chiral phosphonates, especially those with a stereogenic center next to phosphorus, has received much less attention. To address the deficit in asymmetric methods to prepare this important class of molecules, we initiated a study of the asymmetric hydrogenation of functionalized phosphonates 2 to provide compounds of type 3 (Scheme 1). These compounds are multifunctional building blocks containing a stereogenic center next to phosphorus and an ester group amendable for further manipulation at the β position. Nevertheless, compounds like 2 are not trivial extensions of known substrates for asymmetric rho-

Scheme 1. Asymmetric hydrogenation of unsaturated ester phosphonates.

dium-catalyzed hydrogenation as their structure differs considerably from the dehydro amino acids, itaconic acids, and cinnamic acids, established substrates for asymmetric hydrogenation.^[7]

Only a few studies have been devoted to the asymmetric synthesis of **3**. Conjugate addition of chiral enantiopure phosphites to Knoevenagel adducts has been reported by Enders et al.,^[8] whereas Wyatt et al. reported a single example of a diastereoselective alkylation of an enantiopure benzyldiazaphosphine oxide with *tert*-butyl bromoacetate, which upon hydrolysis afforded the corresponding phosphonic acid.^[9] In a recent and extensive study, Jørgensen et al. reported the asymmetric organocatalytic phosphonylation of α , β -unsaturated aldehydes.[10] Although this approach turned out to be effective, the *ees* did not pass the 90% mark, and an excess of aldehyde had to be used.

To the best of our knowledge, only one report has appeared studying the asymmetric hydrogenation of **2**. Bargon et al. used Rh/BPPM in the hydrogenation of **2a** (Scheme 2) and found a 42% *ee*.^[11] A somewhat related asymmetric hydrogenation of β -substituted unsaturated phosphonates was very recently reported by the group of Zheng.^[12] Excellent *ees* were obtained using a ferrocene-based phosphoramidite ligand.

Results and Discussion

We started our study by developing an efficient twostep procedure for the synthesis of 2 (Scheme 2). An arbuzov reaction of trimethyl or triethyl phosphite with a series of aliphatic and aromatic acid chlorides afforded the corresponding α -oxo-phosphonates **1** in moderate to good yields.^[13] It became clear that subsequent treatment of the products with methyl or *tert*butyl (triphenylphosphoranylidene)acetate in a Wittig reaction afforded the substrates **2** selectively in the *E*stereochemistry^[14] in good to high yields. This route is very flexible as it allows the variation of all reaction partners, the alkyl phosphites, the acid chlorides and the Wittig reagent.

An initial study on the hydrogenation of 2 focused on substrate **2b**. Using $Rh(COD)_2BF_4$ as the rhodium precursor and MonoPhos^[15] (L12, Figure 2) as the ligand, dichloromethane was found to be a suitable solvent – using 40 bar of H_2 (gas) at room temperature, 3b was obtained in 53% ee at full conversion. Increasing the pressure of the H_2 (gas) did not lead to a higher ee. To increase the enantioselectivity, the hydrogenation was studied using a series of catalysts based on the chiral ligands depicted in Figure 2 (Table 1). In the monodentate phosphoramidite series the highest enantioselectivity was found using Pip-Phos (L11). Shifting to bidentate phosphines did not show much improvement, as both TolBINAP^[16] L1 and JosiPhos-type^[17] ligand L4 afforded 33% ee (full conversion). A marked increase in enantioselectivity was found using L5 and especially L3, L8 and L10.

We were pleased to see, however, that the hydrogenation of **2c** using a catalyst containing **L6**, a ligand of the JosiPhos family, gave **3c** in an excellent 95% *ee* with full conversion. The increase in enantioselectivity observed upon changing from **L3** to **L6** is noteworthy and most probably caused by the steric bulk of the *tert*-butyl groups.

As we wondered whether the use of a bidentate ligand was essential to achieve a high enantioselectivity in the asymmetric hydrogenation of this novel substrate class, we continued studying monodentate phosphoramidite ligands and finally were rewarded when **L7** was used. The catalyst containing this ligand showed excellent enantioselectivity (95%) in the hydrogenation of 2c, and gave full conversion.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} P(OR^{1})_{3} \\ R^{2} + CI \end{array} & \begin{array}{c} P(OR^{1})_{3} \\ \hline 54 - 70\% \end{array} & \begin{array}{c} (R^{1}O)_{2}P + R^{2} \\ O \end{array} & \begin{array}{c} Ph_{3}P + O \\ R^{3} \end{array} & \begin{array}{c} Ph_{3}P + O \\ O \end{array} & \begin{array}{c} R^{3} \\ O \end{array} & \begin{array}{c} R^{1} \\ R^{2} \\ O \end{array} & \begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \end{array} & \begin{array}{c} R^{1}O \\ R^{3} \end{array} & \begin{array}{c} R^{2} \\ R^{2} \\ R^{2} \\ R^{2} \end{array} & \begin{array}{c} R^{3} \\ R^{2} \\ R^{2} \\ R^{3} \end{array} & \begin{array}{c} R^{1}O \\ R^{3} \\ R^{2} \\ R^{2} \\ R^{3} \end{array} & \begin{array}{c} R^{1}O \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \end{array} & \begin{array}{c} R^{2} \\ R^{3} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \end{array} & \begin{array}{c} R^{2} \\ R^{3} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{2} \\ R^{2} \\ R^{3} \end{array} & \begin{array}{c} R^{2} \\ R^{3} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^$$

1424 asc.wiley-vch.de

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 2. Ligands used in the rhodium catalyzed hydrogenation of 2.

Table 1. Asymmetric hydrogenation of 2c.^[a]

O (EtO) ₂ P	OMe	5 mol% Rh(COD) ₂ BF ₄ Ligand	(EtO) ₂ POMe
	 Ph O 2c	40 bar H ₂ , CH ₂ Cl ₂ , r.t., 24 h	∎ Ph O 3c
Entry	Ligan	d Conv.[%] ^[b] ee [%] ^[c]
1	L1	100	33
2	L2	0	-
3	L3	100	85
4	L4	100	33
5	L5	100	65
6	L6	100	95
7	L7	100	95
8	L8	100	79
9	L9	100	19
10	L10	100	83
11 ^[d]	L11	100	60
12 ^[e]	L12	100	53
13 ^[d]	L13	100	-43

^[a] Reactions were performed on a 0.2-mmol scale.

^[b] Conversions were determined by ¹H NMR.

^[c] The *ee* was determined by chiral HPLC, see Supporting Information.

^[d] 25 bar H_2 pressure was used and **2b** was the substrate.

^[e] **2b** was the substrate.

With two highly selective catalysts in hand, we commenced studying the generality of the high enantioselectivity. A series of substrates was hydrogenated using catalysts derived from **L6** and **L7** and, at least with **L6**, enantioselectivities were mostly above 90% with complete conversion (Table 2). seemed to increase slightly using L6 as the ligand, (91% versus 94%, entries 1 and 3), however, when R^2 was a phenyl moiety there was no difference (both 95%). When $R^2 = Ph$, the shift from $R^3 = Me$ to a bulky tert-butyl ester decreased the ee to 86% (entry 18). Using L6 as the ligand, catalyst loadings could be decreased to 2 mol% maintaining full conversion and a similar ee (entries 5 and 6), whereas further reductions in the catalyst loading led to incomplete conversions (entry 7). The high enantioselectivity found amongst the range of derivatives we tested with a variety of groups at the α -position of the phosphonate (\mathbf{R}^2) suggests that this selectivity is quite general. Especially using L6 as the ligand, high to excellent enantioselectivities were obtained with both aliphatic and aromatic substitutents. Changing the substituent adjacent to the phosphonate from a methyl to a propyl led to only a small reduction in the ee (93%, entry 16). Both electron withdrawing (Cl) and electron donating (OMe) substituents on the phenyl ring did not influence the enantioselectivity (94-95%, entries 10 and 12). The thienyl containing substrate showed a small decrease in ee to 89%. High isolated yields were obtained consistently for all these reactions. The enantioselectivities of the hydrogenation using the catalyst based on phosphoramidite L7 were clearly less consistent with regard to substrate variation; excellent enantioselectivities were only obtained in the hydrogenation of 2c and the thienyl-substituted substrate 2g.

Upon changing from methyl to ethyl phosphonate esters, the enantioselectivity of the hydrogenation Table 2. Hydrogenation of 2 with ligand L6 and L7.

Entry	Subst. ^[a]	Ligand	\mathbb{R}^1	\mathbb{R}^2	Conversion [%] ^[b]	ee [%] ^[c,h]
1	2a	L6	Me	Me	100 (73)	91 (-)
2	2a	L7	Me	Me	100	63
3	2b	L6	Et	Me	100 (85)	94 (-)
4	2c	L6	Et	Phenyl	100 (95)	95 (–)
5	2c	L6 ^[d]	Et	Phenyl	100 (90)	95
6	2c	L6 ^[e]	Et	Phenyl	100	93
7	2c	L6 ^[f]	Et	Phenyl	77	93
8	2c	L7	Et	Phenyl	100	95 (+)
9	2d	L6	Me	Phenyl	100 (96)	95 (-)
10	2e	L6	Me	$4-Cl-C_6H_4$	100 (94)	95 (-)
11	2e	L7	Me	$4-Cl-C_6H_4$	100	40
12	2f	L6	Me	$4-MeO-C_6H_4$	100 (95)	94 (-)
13	2f	L7	Me	$4-MeO-C_6H_4$	100	65
14	2g	L6	Et	Thienyl	100 (90)	89 (-)
15	2g	L7	Et	Thienyl	100	89 (+)
16	2h	L6	Et	n-Propyl	100 (87)	93 (+)
17	2h	L7	Et	n-Propyl	100	71
18 ^[g]	2i	L6	Et	Phenyl	100	86 (-)

^[a] Reactions were performed on a 0.2-mmol scale.

^[b] Conversions were determined by ¹H NMR spectroscopy; numbers in parenthesis are isolated yields.

^[c] The *ee* was determined by chiral HPLC.

^[d] 3 mol% of catalyst was used.

^[e] 2 mol% of catalyst was used.

^[f] 1 mol% of catalyst was used.

^[g] \mathbf{R}^3 is *tert*-butyl.

^[h] The absolute configuration of the products is not known, the sign of the determined optical rotation is given in brackets.

Conclusions

In summary, we have developed the first highly enantioselective catalytic preparation of α -chiral phosphonate esters of type **3** by the asymmetric hydrogenation of readily available vinyl phosphonate precursors (two steps). Using a rhodium/bisphosphine catalyst, very high enantioselectivities and yields are obtained with a range of substituents adjacent to phosphonate. The resulting products are useful multifunctional building blocks for application in the synthesis of physiologically active compounds including enantiopure analogues of fosmidomycin.

Experimental Section

General Experimental Details

Starting materials were purchased from Aldrich, Alfa Aesar or Acros and used as received unless stated otherwise. All solvents were reagent grade and, if necessary, dried and distilled prior to use. Column chromatography was performed on silica gel (Aldrich 60, 230-400 mesh). TLC was performed on silica gel 60/Kieselguhr $F_{254.}$ ¹H and ¹³C NMR spectra were recorded on a Varian AMX 400 [399.93 MHz for ¹H, 100.59 MHz for ¹³C and 161.9 MHz (¹H-decoupled) for ³¹P] spectrometer in CDCl₃ unless stated otherwise. Carbon assignments are based on APT ¹³C experiments. Mass spectra (HR-MS) were performed on a Jeol JMS-600 H. HPLC analysis was performed on a Shimadzu HPLC system equipped with two LC-10AD solvent delivery systems, a DGU-14 A degasser, a SIL-10AD vp auto injector, an SPD-M10 A vp diode array detector, a CTO-10 A vp column oven, and an SCL-10 A vp system controller using the columns indicated for each compound separately. Optical rotations were measured on a Schmidt+Haensch polarimeter (Polartronic MH8) with a 10 cm cell (c given in g/ 100 mL). Ligand L7 was prepared according to the literature procedure.[21,22]

General Procedure for the Synthesis of Compounds 1a-1h

The compounds **1a–1h** were synthesized *via* an Arbuzov reaction.^[12] The corresponding acyl chloride (24 mmol) was added to trimethyl or triethyl phosphite (20 mmol) at 0° C under a nitrogen atmosphere. The mixture was stirred for 24h at room temperature. Unreacted phosphite was removed under vacuum, and further purification by column chromatography (SiO₂, 4/1, heptane/EtOAc) gave the corresponding products in 54–70% yield.

Dimethyl acetylphosphonate (1a):^[13] Pale yellow liquid; yield: 60%; ¹H NMR (CDCl₃): δ =3.61 (d, ³J_{PH}=10.8 Hz, 6H), 2.23 (d, ³J_{PH}=5.2 Hz, 3H); ¹³C NMR (CDCl₃): δ = 208.1 (d, J_{PC}=169.8 Hz), 54.0 (d, ²J_{PC}=7.2 Hz, 2C), 20.9 (d, ²J_{PC}=36.0 Hz); ³¹P NMR (CDCl₃): δ =-0.35 (s).

Diethyl acetylphosphonate (Ib):^[13] Pale yellow liquid; yield: 63%; ¹H NMR (CDCl₃): $\delta = 3.95-4.03$ (m, 4H), 2.24 (d, ${}^{3}J_{\rm PH} = 5.1$ Hz, 3H), 1.14 (t, J = 7.1 Hz, 6H); ¹³C NMR (CDCl₃): $\delta = 208.8$ (d, $J_{\rm PC} = 171$ Hz), 63.7 (d, ${}^{2}J_{\rm PC} = 7.3$ Hz, 2C), 30.6 (d, ${}^{2}J_{\rm PC} = 59.4$ Hz), 16.4 (d, ${}^{3}J_{\rm PC} = 5.5$ Hz, 2C); ³¹P NMR (CDCl₃): $\delta = -2.1$ (s).

Diethyl benzoylphosphonate (1c):^[18] Green liquid; yield: 65%; ¹H NMR (CDCl₃): $\delta = 8.24$ (AA'BB'C, $J_{app} = 7.8$ Hz, 2H), 7.61 (AA'BB'C, $J_{app} = 7.4$ Hz, 1H), 7.48 (AA'BB'C, $J_{app} = 7.4$ Hz, 2H), 4.22–4.29 (m, 4H), 1.36 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃): $\delta = 199.2$ (d, $J_{PC} = 175$ Hz), 135.8 (d, ² $J_{PC} = 63.4$ Hz), 135.0, 130.1, 129.1, 64.2 (d, ² $J_{PC} = 7.3$ Hz, 2C), 16.6 (d, ³ $J_{PC} = 5.9$ Hz, 2C); ³¹P NMR (CDCl₃): $\delta = -0.2$ (s).

Dimethyl benzoylphosphonate (1d):^[13] Green liquid; yield: 64%; ¹H NMR (CDCl₃): $\delta = 8.04$ (AA'BB'C, $J_{app} = 6.5$ Hz, 2H), 7.40 (AA'BB'C, $J_{app} = 7.0$ Hz, 1H), 7.28 (AA'BB'C, $J_{app} = 7.8$ Hz, 2H), 3.71 (d, ${}^{3}J_{PH} = 10.9$ Hz, 6H); ${}^{13}C$ NMR (CDCl₃): $\delta = 198.0$ (d, $J_{PC} = 175.1$ Hz), 135.4 (d, ${}^{2}J_{PC} = 63.4$ Hz), 135.1, 129.8, 129.1, 54.3 (d, ${}^{2}J_{PC} = 7.4$ Hz,2C); ${}^{31}P$ NMR (CDCl₃): $\delta = 1.6$ (s).

Dimethyl 4-chlorobenzoylphosphonate (1e):^[19] Green liquid; yield: 54%; ¹H NMR (CDCl₃): δ =7.82 (AA'BB', J_{app} =8.6 Hz, 2H), 7.10 (AA'BB', J_{app} =8.6 Hz, 2H), 3.56 (d, ³ J_{PH} =10.9 Hz, 6H); ¹³C NMR (CDCl₃): δ =197.1 (d, J_{PC} = 177.2 Hz), 141.3, 133.78 (d, ² J_{PC} =64.8 Hz), 131.1, 129.2, 64.1 (d, ² J_{PC} =6.5 Hz, 2C); ³¹P NMR (CDCl₃): δ =1.0 (s).

Dimethyl 4-methoxybenzoylphosphonate (1f):^[19] Green liquid; yield: 70%; ¹H NMR (CDCl₃): δ =7.92 (AA'BB', J_{app} =8.7 Hz, 2H), 6.65 (AA'BB', J_{app} =8.6 Hz, 2H), 3.59 (d, ³ J_{PH} =10.9 Hz, 6H), 3.54 (s, 3H); ¹³C NMR (CDCl₃): δ = 195.6 (d, J_{PC} =173.6 Hz), 165.1, 132.3 (d, ³ J_{PC} =1.4 Hz), 128.7 (d, ² J_{PC} =65.7 Hz), 114.2, 55.6, 54.0 (d, ² J_{PC} =7.3 Hz, 2C); ³¹P NMR (CDCl₃): δ =2.2 (s).

Diethyl thiophene-3-carbonylphosphonate (1g): Green liquid; yield: 59%; ¹H NMR (CDCl₃): δ =8.36- 8.38 (m, 1H), 7.76- 7.79 (m, 1H), 7.14- 7.17 (m, 1H), 4.17- 4.25 (m, 4H), 1.31 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃): δ =190.6 (d, *J*_{PC}=183.3 Hz), 143.4 (d, ²*J*_{PC}=80.8 Hz), 138.2, 137.3, 129.2 (d, ³*J*_{PC}=1.1 Hz), 64.4 (d, ²*J*_{PC}=7.1 Hz, 2C), 16.5 (d, ³*J*_{PC}=5.8 Hz, 2C); ³¹P NMR (CDCl₃): δ =-1.40 (s); HR-MS (EI+): *m*/*z*=249.0344, calcd. for C₉H₁₄O₄P³²S: 249.0345.

Diethyl butyrylphosphonate (1h):^[20] Pale yellow liquid; yield: 64%; ¹H NMR (CDCl₃): $\delta = 3.90-3.97$ (m, 4H), 2.53 (dt, J = 1.5 Hz, 7.1 Hz, 2H), 1.32–1.40 (m, 2H), 1.09 (t, J = 7.1 Hz, 6H), 0.65 (t, J = 7.4 Hz, 3H); ³¹P NMR (CDCl₃): $\delta = -2.06$ (s).

General Procedure for the Synthesis of the Compounds 2a–i *via* a Wittig reaction

Methoxycarbonylmethyltriphenylphosphonium or *tert*-butoxycarbonylmethyltriphenylphosphonium bromide (5 mmol) in benzene (40 mL) was treated with sodium amide (10 mmol) at room temperature for 24 h. The sodium bromide formed and the unreacted sodium amide were filtered off under a nitrogen flow. Compound **1** (5 mmol) was then added dropwise to the solution of the phosphorane at 0°C and the mixture was allowed to react at room temperature for 24 h. Benzene was removed under vacuum and the residue was purified by crystallization of the triphenylphosphine oxide from heptane/toluene and its removal by filtration. Further purification by column chromatography (SiO₂, 1/1, heptane/EtOAc) gave the corresponding products **2**; yield: 73–85%.

(*E*)-Methyl 3-(dimethoxyphosphoryl)but-2-enoate (2a):^[11] Pale yellow liquid; yield: 73%; ¹H NMR (CDCl₃): $\delta = 6.64$ [dq, J = 1.7, 24.3 (³ $J_{P,H}$) Hz, 1H], 3.77 (d, ³ $J_{P,H} = 10.8$ Hz, 6H), 3.75 (s, 3H), 2.26 [dd, J = 1.7, 15.5 (³ $J_{P,H}$) Hz, 3H); ³¹P NMR (CDCl₃): $\delta = 21.7$ (s).

(*E*)-Methyl 3-(diethoxyphosphoryl)but-2-enoate (2b):^[11] Pale yellow liquid; yield: 77%; ¹H NMR (CDCl₃): $\delta = 6.56$ [dq, J = 1.7, 24.3(³ $J_{P,H}$) Hz, 1H], 3.98–4.08 (m, 4H), 3.68 (s, 3H), 2.19 [dd, J = 1.7, 15.5(³ $J_{P,H}$) Hz, 3H], 1.26 (t, J = 7.1 Hz, 6H); ³¹P NMR (CDCl₃): $\delta = 18.7$ (s).

(*E*)-Methyl 3-(diethoxyphosphoryl)-3-phenylacrylate (2c): Green liquid; yield: 83%; ¹H NMR (CDCl₃): δ =7.18–7.28 (m, 5H), 6.81 (d, ³J_{PH}=23.0 Hz, 1H), 3.95–4.05 (m, 4H), 3.49 (s, 3H), 1.18 (t, *J*=7.0 Hz, 6H); ¹³C NMR (CDCl₃): δ =165.1 (d, ³J_{PC}=28.8 Hz), 145.3 (d, *J*_{PC}=172.9 Hz), 134.2 (d, ²J_{PC}=6.8 Hz), 132.0 (d, ²J_{PC}=11.3 Hz), 128.5 (d, ³J_{PC}=2.1 Hz), 128.2, 128.2, 63.1 (d, ²J_{PC}=6.1 Hz, 2C), 51.9, 16.4 (d, ³J_{PC}=6.2 Hz, 2C); ³¹P NMR (CDCl₃): δ =15.0 (s); HR-MS (EI+): *m*/*z*=299.1044, calcd. for C₁₄H₂₀O₅P: 299.1043.

(*E*)-Methyl 3-(dimethoxyphosphoryl)-3-phenylacrylate (2d): Green liquid; yield: 81%; ¹H NMR (CDCl₃): δ = 7.19– 7.30 (m, 5H), 6.84 (d, ³J_{PH}=23.2 Hz, 1H), 3.65 (d, ³J_{PH}= 11.1 Hz, 6H), 3.51 (s, 3H); ¹³C NMR (CDCl₃): δ =165 (d, ³J_{PC}=29.0 Hz), 144.0 (d, J_{PC}=173.3 Hz), 134.0 (d, ²J_{PC}= 6.8 Hz), 132.8 (d, ²J_{PC}=11.1 Hz), 128.7, 128.3, 128.1 (d, ³J_{PC}=5.4 Hz), 53.4 (d, ²J_{PC}=6.1 Hz, 2C), 52.0; ³¹P NMR (CDCl₃): δ =17.8 (s); HR-MS (EI+): *m*/*z*=271.0729, calcd. for C₁₂H₁₆O₅P: 271.0730,.

(*E*)-Methyl 3-(4-chlorophenyl)-3-(dimethoxyphosphoryl)acrylate (2e): Green liquid; yield: 85%; ¹H NMR (CDCl₃): δ =7.28 (AA'BB', J_{app} =8.1 Hz, 2H), 7.15 (AA'BB', J_{app} = 8.4 Hz, 2H), 6.83 (d, ³ J_{PH} =23.1 Hz, 1H), 3.66 (d, ³ J_{PH} = 11.0 Hz, 6H), 3.54 (s, 3H); ¹³C NMR (CDCl₃): δ =164.7 (d, ³ J_{PC} =28.7 Hz), 143.1 (d, J_{PC} =174.7 Hz), 134.8, 133.1 (d, ² J_{PC} =11.3 Hz), 132.4, 129.7 (d, ² J_{PC} =5.4 Hz), 128.6, 53.5 (d, ² J_{PC} =6.1 Hz, 2C), 52.1; ³¹P NMR (CDCl₃): δ =17.3 (s); HR-MS (EI+): m/z=305.0339, calcd. for C₁₂H₁₅O₅P³⁵Cl: 305.0340.

(*E*)-Methyl 3-(dimethoxyphosphoryl)-3-(4-methoxyphenyl)acrylate (2f): Green liquid; yield: 77%; ¹H NMR (CDCl₃): $\delta = 7.18$ (AA'BB', $J_{app} = 8.7$ Hz, 2H), 6.84 (AA'BB', $J_{app} = 8.9$ Hz, 2H), 6.80 (d, ${}^{3}J_{PH} = 23.2$ Hz, 1H), 3.75 (s, 3H), 3.67 (d, ${}^{3}J_{PH} = 11.0$ Hz, 6H), 3.56 (s, 3H); ${}^{13}C$ NMR (CDCl₃): $\delta = 165.2$ (d, ${}^{3}J_{PC} = 29.0$ Hz), 160.1, 143.2 (d, $J_{PC} = 173.2$ Hz), 132.2 (d, ${}^{2}J_{PC} = 11.9$ Hz), 129.7 (d, ${}^{3}J_{PC} =$ 5.6 Hz), 125.8 (d, ${}^{2}J_{PC} = 7.2$ Hz), 113.9, 55.4, 53.4 (d, ${}^{2}J_{PC} =$ 6.1 Hz, 2C), 52.0; ${}^{31}P$ NMR (CDCl₃): $\delta = 18.4$ (s); HR-MS (EI+): m/z = 301.0836, calcd. for C₁₃H₁₈O₆P: 301.0836.

(*E*)-Methyl 3-(diethoxyphosphoryl)-3-(thiophen-3-yl)acrylate (2g): Green liquid; yield: 81%; ¹H NMR (CDCl₃): $\delta =$

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

7.40 (d, J = 5.1 Hz, 1H), 7.30 (m, 1H), 7.03 (dd, J = 4.0 Hz, 4.7 Hz, 1H), 6.90 (d, ${}^{3}J_{\rm PH} = 22.96$ Hz, 1H), 4.04–4.19 (m, 4H), 3.70 (s, 3H), 1.29 (t, J = 7.1 Hz, 6H); 13 C NMR (CDCl₃): $\delta = 165.5$ (d, ${}^{3}J_{\rm PC} = 27.5$ Hz), 135.7 (d, $J_{\rm PC} =$ 175.9 Hz), 133.6 (d, ${}^{2}J_{\rm PC} = 9.5$ Hz), 131.9 (d, ${}^{2}J_{\rm PC} = 10.8$ Hz), 129.9 (d, ${}^{3}J_{\rm PC} = 6.3$ Hz), 128.4, 127.1, 63.1 (d, ${}^{2}J_{\rm PC} = 5.8$ Hz, 2C), 52.1, 16.3 (d, ${}^{3}J_{\rm PC} = 6.1$ Hz, 2C); 31 P NMR (CDCl₃): $\delta =$ 14.9 (s); HR-MS (EI+): m/z = 305.0607, calcd. for $C_{12}H_{18}O_{3}P^{32}S$: 305.0607.

(*E*)-Methyl 3-(diethoxyphosphoryl)hex-2-enoate (2h): Pale yellow liquid; yield: 77%; ¹H NMR (CDCl₃): $\delta = 6.55$ (d, ${}^{3}J_{\rm PH} = 24.3$ Hz, 1H), 4.0–4.10 (m, 4H), 3.68 (s, 3H), 2.60 [dt, J = 7.8 Hz, 20.7 (${}^{3}J_{\rm PH}$) Hz, 2H], 1.47–1.55 (m, 2H), 1.27 (t, J = 7.0 Hz, 6H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃): $\delta = 165.3$ (d, ${}^{3}J_{\rm PC} = 32.1$ Hz), 148.8 (d, $J_{\rm PC} =$ 167.2 Hz), 130.2 (d, ${}^{2}J_{\rm PC} = 12.5$ Hz), 62.5 (d, ${}^{2}J_{\rm PC} = 5.9$ Hz, 2C), 51.7, 30.9 (d, ${}^{2}J_{\rm PC} = 6.7$ Hz), 22.8, 16.4 (d, ${}^{3}J_{\rm PC} = 6.2$ Hz, 2C), 14.4; ³¹P NMR (CDCl₃): $\delta = 19.1$ (s); HR-MS (EI+): m/z = 265.1197, calcd. for C₁₁H₂₂O₅P: 265.1199.

(*E*)-*tert*-Butyl 3-(diethoxyphosphoryl)-3-phenylacrylate (2i): Green liquid; yield: 79%; ¹H NMR (CDCl₃): δ =7.17– 7.27 (m, 5H), 6.72 (d, ³J_{PH}=23.2 Hz, 1H), 3.95–4.05 (m, 4H), 1.18 (t, *J*=7.0 Hz, 6H), 1.14 (s, 9H); ¹³C NMR (CDCl₃): δ =164.2 (d, ³J_{PC}=27.5 Hz), 142.2 (d, *J_{PC}*= 173.5 Hz), 134.9 (d, ²J_{PC}=6.6 Hz), 134.6 (d, ²J_{PC}=6.9 Hz), 128.4, 128.2, 128.1, 81.8, 62.8 (d, ²J_{PC}=6.1 Hz, 2C), 27.7 (d, ³J_{PC}=8.6 Hz, 2C), 16.4 (3C); ³¹P NMR (CDCl₃): δ =15.8 (s); HR-MS (EI+): *m*/*z*=341.1514, calcd. for C₁₇H₂₆O₅P: 341.1512.

General Procedure for the Hydrogenation

The standard operating procedure for hydrogenation using an autoclave was as follows: To a glass reaction vessel was added 0.20 mmol of substrate, bidentate ligand (0.010 mmol) or monodentate ligand (0.020 mmol), $Rh(COD)_2BF_4$ (0.010 mmol) and 4.0 mL of solvent. The reaction vessel was placed in the autoclave and purged 4 times with nitrogen followed by purging with hydrogen, and finally pressurized to 40 bar of hydrogen. The sample was stirred at 700 rpm for 24 h. The reaction mixture was filtered over a silica plug (1/1, EtOAc/heptane) after which the conversion and *ee* were determined by ¹H NMR spectroscopy and chiral HPLC, respectively.

Methyl 3-(dimethoxyphosphoryl)butanoate (3a):^[11] Colourless oil; ¹H NMR (CDCl₃): δ =3.69 (d, ³J_{PH}=10.6 Hz, 6H), 3.63 (s, 3H), 2.64–2.76 (m, 1H), 2.30–2.44 (m, 1H), 2.20–2.30 (m, 1H), 1.15 [dd, *J*=7.1, 18.2 (³J_{P-H}) Hz, 3H]; ³¹P NMR (CDCl₃): δ =36.05 (s); $[\alpha]_D$: -4 (c 0.35, CHCl₃, 91% *ee*); Chiral HPLC (Chiralpak AD-H, 40°C, heptane/IPA 97:3, 0.5 mLmin⁻¹): t_r =34.7 min (major **3a**), 38.8 min (minor **3a**).

Methyl 3-(diethoxyphosphoryl)butanoate (3b):^[11] Colourless oil; ¹H NMR (CDCl₃): δ =4.04–4.07 (m, 4H), 3.65 (s, 3H), 2.64–2.80 (m, 1H), 2.20–2.41 (m, 2H), 1.27 (t, *J*= 7.0 Hz, 6H), 1.13 [dd, *J*=7.0, 18.3 (³*J*_{PH}) Hz, 3H]; ³¹P NMR (CDCl₃): δ =33.52 (s); [α]_D: -2.75 (*c* 0.8, CHCl₃, 94% *ee*); chiral HPLC (Chiralpak AD-H, 40°C, heptane/IPA 97:3, 0.5 mLmin⁻¹): *t_r*=31.9 min (major **3b**), 35.5 min (minor **3b**).

Methyl 3-(diethoxyphosphoryl)-3-phenylpropanoate (3c): Colourless oil; ¹H NMR (CDCl₃): δ =7.37–7.23 (m, 5H), 3.98–4.08 (m, 2H), 3.86–3.93 (m, 1H), 3.70–3.80 (m, 1H), 3.63 [ddd, J = 22.5 (² J_{PH}), 10.3, 4.8 Hz, 1 H], 3.57 (s, 3 H), 3.05–3.13 (m, 1 H), 2.91–3.00 (m, 1 H), 1.27 (t, J = 7.0 Hz, 3 H), 1.11 (t, J = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃): $\delta = 171.6$ (d, ³ $J_{PC} = 19.1$ Hz), 135.4 (d, ² $J_{PC} = 6.9$ Hz), 129.2 (d, ³ $J_{PC} =$ 6.5 Hz), 128.7 (d, ⁵ $J_{PC} = 2.3$ Hz), 127.6 (d, ⁴ $J_{PC} = 3.0$ Hz), 63.0 (d, ² $J_{PC} = 6.96$ Hz), 62.3 (d, ² $J_{PC} = 7.3$ Hz), 52.1, 40.1 (d, $J_{PC} =$ 140.4 Hz), 35.2, 16.6 (d, ³ $J_{PC} = 6.0$ Hz), 16.4 (d, ³ $J_{PC} =$ 5.9 Hz); ³¹P NMR (CDCl₃): $\delta = 28.2$ (s); [α]_D: -4.2 (c 0.7, CHCl₃, 95% *ee*); HR-MS (EI+): m/z = 301.1199, calcd. for C₁₄H₂₂O₅P: 301.1199; chiral HPLC (Chiralpak AD-H, 40°C, heptane/IPA 95:5, 0.5 mL min⁻¹): $t_r = 34.4$ min (minor **3c**), 37.7 min (major **3c**).

Methyl 3-(dimethoxyphosphoryl)-3-phenylpropanoate (3d):^[9] Colourless oil; ¹H NMR (CDCl₃): δ =7.20–7.33 (m, 5H), 3.64 (d, ³J_{PH}=10.7 Hz, 3H), 3.59–3.68 (m, 1H), 3.52 (s, 3H), 3.45 (d, ³J_{PH}=10.6 Hz, 3H), 2.99–3.07 (m, 1H), 2.86–2.96 (m, 1H); ¹³C NMR (CDCl₃): δ =171.5 (d, ³J_{PC}=18.8 Hz), 135.1 (d, ²J_{PC}=7.2 Hz), 129.2 (d, ³J_{PC}=6.6 Hz), 128.8 (d, ⁵J_{PC}=2.4 Hz), 127.8 (d, ⁴J_{PC}=3.1 Hz), 53.8 (d, ²J_{PC}=7.0 Hz), 53.1 (d, ²J_{PC}=7.2 Hz), 52.1, 40.1 (d, J_{PC}=140.4 Hz), 35.1; ³¹P NMR (CDCl₃): δ =30.6 (s); [α]_D: -10.4 (*c* 0.5, CHCl₃, 95% *ee*); HR-MS (EI+): *m*/*z*=273.0889, calcd. for C₁₂H₁₈O₅P: 273.0886; chiral HPLC (Chiralpak AS-H, 40 °C, heptane/IPA 95:5, 0.5 mLmin⁻¹): *t_r*=25.4 min (major 3d), 30.0 min (minor 3d).

Methyl 3-(4-chlorophenyl)-3-(dimethoxyphosphoryl)propanoate (3e): Colourless oil; ¹H NMR (CDCl₃): δ =7.27 (s, 4H), 3.68 (d, ³*J*_{PH}=10.6 Hz, 3H), 3.56-3.65 (m, 1H), 3.55 (s, 3H), 3.52 (d, ³*J*_{PH}=10.6 Hz, 3H), 2.99-3.08 (m, 1H), 2.84-2.92 (m, 1H); ¹³C NMR (CDCl₃): δ =171.3 (d, ³*J*_{PC}=19.1 Hz), 133.8 (d, ²*J*_{PC}=7.1 Hz), 133.7, 130.5 (d, ³*J*_{PC}=6.4 Hz), 129.1 (d, ⁴*J*_{PC}=2.5 Hz), 53.9 (d, ²*J*_{PC}=7.0 Hz), 53.2 (d, ²*J*_{PC}=7.4 Hz), 52.2, 39.57 (d, *J*_{PC}=141.0 Hz), 35.0; ³¹P NMR (CDCl₃): δ =30.0 (s); [α]_D: -8.8 (*c* 0.5, CHCl₃, 95% *ee*); HR-MS (EI+): m/z=307.0497, calcd. for C₁₂H₁₇O₅P³⁵Cl: 307.0497; chiral HPLC (Chiralpak AS-H, 40 °C, heptane/IPA 95:5, 0.5 mLmin⁻¹): *t_r*=27.6 min (major **3e**), 30.0 min (minor **3e**).

Methyl 3-(dimethoxyphosphoryl)-3-(4-methoxyphenyl)propanoate (3f): Colourless oil; ¹H NMR (CDCl₃): δ =7.25 (AA'BB', J_{app} =8.4 Hz, 2H), 6.84 (AA'BB', J_{app} =8.1 Hz, 2H), 3.76 (s, 3 H), 3.67 (d, ³ J_{PH} =10.7 Hz, 3H), 3.58–3.63 (m, 1H), 3.55 (s, 3 H), 3.49 (d, ³ J_{PH} =10.5 Hz, 3H), 2.98–3.06 (m, 1H), 2.84–2.93 (m, 1H); ¹³C NMR (CDCl₃): δ =171.6 (d, ³ J_{PC} =19.6 Hz), 159.2 (d, ⁵ J_{PC} =3.1 Hz), 130.2 (d, ³ J_{PC} =6.3 Hz), 126.9 (d, ² J_{PC} =7.4 Hz), 114.3 (d, ⁴ J_{PC} =2.3 Hz), 55.4, 53.8 (d, ² J_{PC} =6.9 Hz), 53.1 (d, ² J_{PC} =7.4 Hz), 52.1, 39.3 (d, J_{PC} =141.4 Hz), 35.3; ³¹P NMR (CDCl₃): δ =30.9 (s); [α]_D: -8 (c 0.25, CHCl₃, 94% ee); HR-MS (EI +): m/z = 303.0991, calcd. for C₁₃H₂₀O₆P: 303.0992; chiral HPLC (Chiralpak AD-H, 40°C, heptane/IPA 90:10, 0.5 mL min⁻¹): t_r=28.3 min (minor **3f**), 30.0 min (major **3f**).

Methyl 3-(diethoxyphosphoryl)-3-(thiophen-3-yl)propanoate (3g): Colourless oil; ¹H NMR (CDCl₃): δ = 7.19 (d, J = 5.1 Hz, 1 H), 7.03 (t, J = 3.4 Hz, 1 H), 6.94 (t, J = 4.2 Hz, 1 H), 4.01- 4.09 (m, 2 H), 3.85-4.01 (m, 3 H), 3.61 (s, 3 H), 3.05- 3.13 (m, 1 H), 2.85- 2.94 (m, 1 H), 1.28 (t, J = 7.1 Hz, 3 H), 1.18 (t, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃): δ = 171.3 (d, ³ J_{PC} =17.9 Hz), 137.4 (d, ² J_{PC} =8.2 Hz), 127.1 (d, ⁴ J_{PC} = 3.3 Hz), 127.0 (d, ³ J_{PC} =7.8 Hz), 125.1 (d, ³ J_{PC} =3.8 Hz), 63.3 (d, ² J_{PC} =6.9 Hz), 62.7 (d, ² J_{PC} =6.1 Hz), 16.5 (d, ³ J_{PC} = 6.1 Hz); ³¹P NMR (CDCl₃): $\delta = 26.1$ (s); $[\alpha]_{D}$: -41 (c 0.7, CHCl₃, 89% *ee*); HR-MS (EI+): m/z=307.0764, calcd. for C₁₂H₂₀O₅P³²S: 307.0764; chiral HPLC (Chiralpak OJ-H, 40 °C, heptane/IPA 95:5, 0.5 mLmin⁻¹): $t_r = 29.0$ min (major **3g**), 52.4 min (minor **3g**).

Methyl 3-(diethoxyphosphoryl)hexanoate (3h): Colourless oil; ¹H NMR (CDCl₃): δ =4.01–4.08 (m, 4H), 3.64 (s, 3H), 2.58–2.70 (m, 1H), 2.29–2.40 (m, 2H), 1.61–1.75 (m, 2H), 1.32–1.44 (m, 2H), 1.26 (t, *J*=7.0 Hz, 6H), 0.86 (t, *J*=6.9 Hz, 3H); ¹³C NMR (CDCl₃): δ =172.7 (d, ³*J*_{PC}=14.1 Hz), 61.98 (d, ²*J*_{PC}=6.7 Hz), 61.9 (d, ²*J*_{PC}=6.9 Hz), 52.0, 33.9 (d, ²*J*_{PC}=2.3 Hz), 32.7 (d, *J*_{PC}=142.3 Hz), 31.3 (d, ²*J*_{PC}=3.6 Hz), 20.8 (d, ³*J*_{PC}=9.9 Hz), 16.60 (d, ³*J*_{PC}=5.9 Hz, 2C), 14.2; ³¹P NMR (CDCl₃): δ =33.5 (s); [α]_D: +4.4 (*c* 0.9, CHCl₃, 93% *ee*); HR-MS (EI+): *m*/*z*=267.1354, calcd. for C₁₁H₂₄O₅P: 267.1356; chiral HPLC (Chiralpak AD-H, 40°C, heptane/IPA 97:3, 0.5 mL min⁻¹): *t*_r=29.2 min (major **3h**), 31.6 min (minor **3h**).

tert-Butyl 3-(diethoxyphosphoryl)-3-phenylpropanoate (3i): Colourless oil; ¹H NMR (CDCl₃): $\delta = 7.22 - 7.34$ (m, 5H), 3.98-4.06 (m, 2H), 3.86-3.95 (m, 1H), 3.71-3.81 (m, 1 H), 3.56 [ddd, J = 22.5 (² $J_{P,H}$), 10.99, 4.7 Hz, 1 H], 2.94–3.01 (m, 1H), 2.81-2.91 (m, 1H), 1.26 (t, J=7.1 Hz, 3H), 1.23 (s, J=7.1 Hz, 3H), 1.24 (s, J=7.1 Hz), 1.24 (s, J=79H), 1.10 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃): $\delta = 170.3$ (d, ${}^{3}J_{P,C}=20.0$ Hz), 135.5 (d, ${}^{2}J_{P,C}=6.95$ Hz), 129.4 (d, ${}^{3}J_{P,C}=$ 6.3 Hz), 128.6 (d, ${}^{5}J_{P,C}$ =2.6 Hz), 127.5 (d, ${}^{4}J_{P,C}$ =3.3 Hz), 81.1, 62.9 (d, ${}^{2}J_{P,C}$ =6.95 Hz), 62.3 (d, ${}^{2}J_{P,C}$ =7.3 Hz), 41.0 (d, $J_{P,C}$ = 139.6 Hz), 36.4, 28.0 (3 C), 16.6 (d, ${}^{3}J_{PC}$ =5.9 Hz), 16.5 (d, ${}^{3}J_{PC} = 5.7 \text{ Hz}$; ${}^{31}P \text{ NMR} \text{ (CDCl}_3)$: $\delta = 28.5 \text{ (s)}; [\alpha]_{D}$: -9 (c)1.4, CHCl₃, 86% *ee*); HR-MS (EI+): m/z = 343.1670, calcd. for C17H28O5P: 343.1669; chiral HPLC (Chiralpak AS-H, 40 °C, heptane/IPA 95:5, 0.5 mLmin⁻¹): $t_r = 8.7$ min (major 3i), 10.0 min (minor 3i).

Acknowledgements

E. P. Schudde and T. Tiemersma-Wegman are acknowledged for technical assistance. A generous gift of a Josiphos ligand kit by Solvias, Basel, is gratefully acknowledged.

References

- [1] P. Savignac, B. Iorga, in: *Modern Phosphonate Chemistry*, CRC Press, Boca Raton, **2003**.
- [2] Biomedical Chemistry, Applying Chemical Principles to the Understanding and Treatment of Disease, (Ed.: P. F. Torrence), Wiley, New York, 2000, pp 195–199.
- [3] a) K. Moonen, E. Van Meenen, A. Verwee, C. V. Stevens, Angew. Chem. 2005, 117, 7573; Angew. Chem. Int. Ed. 2005, 44, 7407. For a review on glutamate receptors, see: b) H. Brauner-Osborne, J. Egebjerg, E. Ø. Nielsen, U. Madsen, P. Krogsgaard-Larsen, J. Med. Chem. 2000, 43, 2609. See also: c) Y. Tanabe, A. Nomura, M. Masu, R. Shigemoto, N. Mizuno, S. Nakanishi, J. Neurosci. 1993, 13, 1372; d) Y. Nakajima, H. Iwakabe, C. Akazawa, H. Nawa, R. Shigemoto, N. Mizuno, S. Nakanishi, J. Biol. Chem. 1993, 268, 11868; e) N. Okamoto, S. Hori, C. Akazawa, Y. Hayashi, R. Shigemoto, N. Mizuno, S. Nakanishi, J. Biol. Chem. 1994, 269, 1231.

- [4] a) R. Emkey, W. Koltun, K. Beusterien, L. Seidman, A. Kivitz, V. Devas, *Curr. Med. Res. Opin.* 2005, *21*, 1895;
 b) Y. Q. Yang, S. Z. Luo, M. F. Pu, J. H. He, W. Z. Bing, G. Q. Wang, *J. Radioanal. Nucl. Chem.* 2003, *1*, 133.
- [5] H. Jomaa, J. Wiesner, B. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. Türbachova, M. Eberl, J. Zeidler, H. K. Lichtenthaler, D. Soldati, E. Beck, *Science* 1999, 285, 1573. 1-Deoxy-D-xylulose 5-phosphate reducto-isomerase is a key enzyme of the DOXP/MEP pathway of isoprenoid biosynthesis present in protozoans but not in mammals.
- [6] T. Haemers, J. Wiesner, R. Busson, H. Jomaa, S. V. Calenbergh, *Eur. J. Org. Chem.* 2006, 3856–3863, and references cited therein.
- [7] Handbook of Homogeneous Hydrogenation, (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, New York, 2007.
- [8] L. Laurenco, D. Enders, Org. Lett. 2001, 3, 3513.
- [9] a) S. Gardner, M. Motevalli, K. Shastri, A. C. Sullivan, P. B. Wyatt, *New. J. Chem.* 2002, 26, 433. In a more recent paper the unexpected conjugated ethyl transfer from diethylaluminum chloride to a chiral enantiopure 3-phosphonopropenoyl derivative was reported, with unknown diastereoselectivity; b) E. W. C. Cheng, R. T. Mandalia, M. Motevalli, B. Mothia, Y. Patanwadia, P. B. Wyatt, *Tetrahedron* 2006, 62, 12398.
- [10] E. Maerten, S. Cabrera, A. Kjærsgaard, K. A. Jørgensen, J. Org. Chem. 2007, 72, 8893–8903.
- [11] a) R. Kadyrov, R. Selke, R. Giernoth, J. Bargon, Synthesis 1999, 1056–1062. BPPM=N-tert-butoxycarbonyl-2-diphenylphoshino-4-methylene-diphenylphosphino pyrrolidine. Hydrogenation of the isomeric vinyl phosphonate gave 98% ee, for the use of a different catalyst in this reaction see b) J. Holz, R. Kadyrov, S. Borns, D. Heller, A. Börner, J. Organomet. Chem. 2000, 603, 61.
- [12] Z. C. Duan, X. P. Hu, D. Y. Wang, J. D. Huang, S. B. Yu, J. Deng, Z. Zheng, Adv. Synth. Catal. 2008, 350, 1979.
- [13] M. Yamashita, M. Kojima, H. Yoshida, T. Ogata, S. Inokawa, Bull. Chem. Soc. Jpn. 1980, 53, 1625.
- [14] The *E*-stereochemistry was determined by ¹H NMR spectroscopy *via* the $J_{P,H}$, see: G. L. Kenyon, F. H. Westheimer, *J. Am. Chem. Soc.* **1966**, *88*, 3557. In addition, no NOE was observed between the vinylic H and the R² substituent.
- [15] For asymmetric hydrogenation using monodentate phosphoramidite ligands, see: a) A. J. Minnaard, B. L. Feringa, L. Lefort, J. G. de Vries, *Acc. Chem. Res.* 2007, 40, 1267; b) A. F. Meindertsma, M. M. Pollard, B. L. Feringa, J. G. de Vries, A. J. Minnaard, *Tetrahedron: Asymmetry* 2007, 18, 2849.
- [16] For a review of BINAP-type ligands, see: M. Berthod, G. Mignani, G. Woodward, M. Lemaire, *Chem. Rev.* 2005, 105, 1801.
- [17] For a review on the use of Josiphos-type ligands, see: H. U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer, A. Togni, *Top. Catal.* **2002**, *19*, 3.
- [18] C. Yuan, S. Cui, G. Wang, H. Feng, D. Chen, C. Li, Y. Ding, L. Maier, *Synthesis* **1992**, 258.
- [19] K. D. Berlin, H. A. Taylor, J. Am. Chem. Soc. 1964, 86, 3862.

- [20] B. Ackerman, T. A. Jordan, C. R. Eddy, D. Swern, J. Am. Chem. Soc. 1956, 78, 4444.
- [21] G. W. Gokel, G. Marquarding, I. K. Ugi, J. Org. Chem. 1972, 37, 3052.
- [22] Q. H. Zeng, X. P. Hu, Z. C. Duan, X. M. Liang, Z. Zheng, J. Org. Chem. 2006, 71, 393.