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Abstract

One-pot synthesis of substituted pyrano- and furano[3,2-c]quinoline derivatives from appropriately substituted anilines,

substituted benzaldehydes and dienophiles via Povarov reaction catalyzed by HCl–ethanol were reported. Good to excellent

yields with high diastereoselectivity were obtained in all entries tested.
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The 1,2,3,4-tetrahydroquinoline skeleton is presented as an important subunit in many biological active alkaloids

including those that target NMDA receptor [1], CETP [2], G-protein coupled receptor [3] and HIV-1 RT [4]. Thus, the

construction of this skeleton has attracted a great deal of attentions. Diverse methods for the synthesis of

tetrahydroquinoline derivatives have been developed so far [5,6]. Among them, the aza-Diels–Alder reaction between

N-aryl imines and nucleophilic olefins was frequently applied for this synthesis purpose in the presence of suitable

catalyst. To date, a number of Lewis acids have been explored as catalysts for the preparation of these compounds,

including BF3�OEt2 [7], Yb(OTf)3 [8], VCl3 [9], and others [10–16]. However, the efficiency and/or readily

accessibility of the catalysts remain occasionally concerned issues in this aza-Diels–Alder reaction.

Herein, we describe a practical procedure for synthesis of substituted pyrano- and furano[3,2-c]quinolines via

Povarov reaction in the presence of HCl–ethanol, an inexpensive and readily accessible reagent compared with most of

Lewis acids. This synthetic procedure involves treating a mixture of 3,4-dihydro-2H-pyran and benzaldehyde with an

acetonitrile solution of aniline and HCl–ethanol (Scheme 1), to give the corresponding tetrahydroquinolines 3a and 4a

in 90% yield.

In the initial attempt, HCl–ethanol with different concentrations were prepared and applied in the model reaction of

aniline (0.93 g, 10 mmol), benzaldehyde (1.07 g, 10 mmol) with 3,4-dihydro-2H-pyran (0.84 g, 10 mmol) in

acetonitrile (25 mL) at ambient temperature (Scheme 1). As a result, the reaction rate appeared more reasonable in the
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Scheme 1.

Table 1

Effect of solvents and concentrations of HCl (in ethanol) on the reaction.

Round Solvent Concentrationa,b (wt%) Volume of solvents (mL) Time (h) Conversion ratec (%)

1 CH3CN 0 25 2 0

2 CH3CN 5 25 2 32

3 CH3CN 10 25 1.5 95

4 CH3CN 15 25 2 93

5 CH3CN 20 25 2 92

6 CH3OH 10 25 2 89

7 CH3CH2OH 10 25 2 85

8 CH2Cl2 10 25 2 47

a Concentration of HCl in ethanol.
b HCl–ethanol solutions with different concentrations were prepared by diluting 22.7% HCl–ethanol (fresh prepared) with ethanol.
c The conversion rates were determined by LC/MS.
presence of 10% (wt) HCl–ethanol, while no significant changes were found when higher concentrated HCl–ethanol

were applied instead. Based on these findings, the effect of solvents on the reaction catalyzed by 10% (wt) HCl–

ethanol was studied, and acetonitrile was proved to be the better solvent than other solvents examined (Table 1).

We also assayed the ability of other seven common acids functioning as catalysts for the cycloaddition in this

reaction (Scheme 1). Our results indicated that HCl–ethanol was a more suitable catalyst, offering acceptable yield and

high diastereoselectivity. And the efficiency of HCl–ethanol could be also observed from the comparison between our

results and literature data of some other reported catalysts (Table 2).

To explore the scope of this protocol, the reactions of various substituted anilines and substituted benzaldehydes

with 3,4-dihydro-2H-pyran or 2,3-dihydrofuran were carried out under the optimized conditions [17], and the results

were summarized in Table 3. In all cases, the reactions went smoothly to give the corresponding products in moderate
Table 2

The catalytic efficiency of HCl–ethanol and some other catalysts.

Round Catalyst Amount Reaction time (h) Yielda (%) Ratiob (3a:4a)

1 HCOOHc 1 mL 12 48 68:32

2 AcOHc 1 mL 12 25 55:45

3 HNO3 (35%)c 1 mL 24 10 85:15

4 H2SO4
c 1 mL 24 5 83:17

5 HCl (36%)c 1 mL 2 9 55:45

6 HBr (40%)c 1 mL 2 60 80:20

7 HI (45%)c 1 mL 2 55 78:22

8 HCl–ethanol (10%) 1 mL 1.5 90 90:10 [17]

9 Proline triflate 5 mol% 5 85 75:25 [10]

10 GdCl3 20 mol% 0.5 86 67:33 [11]

11 InCl3 20 mol% 0.5 80 41:59 [13]

12 I2 30 mol% 3 84 77:23 [16]

a Isolated yields of 3a and 4a.
b The product ratios were determined by LC/MS.
c Similar reaction conditions as entry 8.



R.H. Liu et al. / Chinese Chemical Letters 23 (2012) 1027–1030 1029

Table 3

Synthesis of pyrano- and furano[3,2-c]quinoline derivatives under HCl–ethanol catalysis.

Entry R1 R2 R3 R4 n Time [h] Yielda [%] Ratiob (3:4) Ref

a H H H H 2 1.5 77 (3a) 90:10 [18]

b H CH3 H H 2 2.5 65 (3b) 72:18 [18]

c H Cl H H 2 2.5 70 (3c) 95:5 [18]

d H OCH3 H H 2 1.5 55 (3d) 85:15 [19]

e H H H OH 2 2.5 63 (3e) 80:20

f H H H NO2 2 1.0 78 (3f) 95:5 [18]

g H H H CH3 2 2.5 65 (3g) 86:14 [20]

h H H Br H 2 1.5 73 (3h) 85:15 [10]

i H H H OCH3 2 2.5 70 (3i) 87:13 [19]

j H H H H 1 1.5 75 (4j) 9:91 [18]

k H CH3 H H 1 1.5 58 (4k) 35:65

l H Cl H H 1 2.5 70 (4l) 5:95 [18]

m H CH3 H OH 1 3.5 58 (4m) 20:80

n H OCH3 H H 1 2.0 68 (4n) 25:75 [11]

o H H H OH 1 2.5 67 (4o) 25:75

p H H H NO2 1 1.0 80 (4p) 0:100 [18]

q H H H CH3 1 2.5 62 (4q) 30:70 [18]

r H H Br H 1 1.5 83 (4r) 30:70

a Isolated yields.
b The product ratios were determined by LC/MS.

Scheme 2.
to good yields. The major products were isolated and characterized by 1H NMR, 13C NMR and HRMS, and the

stereochemistry of the isolated products was assessed on the basis of the coupling constant values between H-C4a and

H-C5 (J4a,5) and comparison with literature data. The data acquired in this investigation suggested a close correlation

between the product diastereoselectivities and the dienophile used. Dihydropyran provided a great opportunity for the

generation of trans diastereosimers, while cis diastereoisomers were favored in cases of dihydrofuran. Adducts 3a–i,

exhibited higher coupling constants J4a,5 (8.1–11.1 Hz), typical for a trans conformation in which the pyran ring and

phenyl ring are on opposite sides of the quinoline ring. In adducts 4j–r, smaller coupling constants J4a,5 (4.6–5.6 Hz)

were observed indicating a cis conformation that the furan ring and phenyl group are on the same side (Scheme 2).

In conclusion, we have demonstrated that HCl, a readily available non-Lewis acid, can be used as catalyst for

construction of pyrano- and furano[3,2-c]quinolines. In comparison with the other acids examined (e.g., AcOH) and

some other reported catalysts (e.g., GdCl3), HCl–ethanol is more effective and affords better yields with high

diastereoselectivity according to our experimental results. Furthermore, our novel procedure possesses some other

advantages including chemistry more accessible and cleaner reaction mixture. These features make our procedure a

useful approach for the synthesis of fused-ring quinolines of biological importance.
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