COMMUNICATIONS

- New or improved synthetic methods
- Key intermediates
- with full experimental and analytical data

A Convenient Preparation of [1,2,5]Oxa- and [1,2,5]Thiadiazolo[3,4-c]pyridines

Shuntaro Mataka, Kazufumi Takahashi, Masashi Tashiro*

Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812, Japan

We report a convenient synthesis of the condensed pyridine systems, [1,2,5]oxa- and [1,2,5]thiadiazolo[3,4-c]pyridines 3, by the reaction of alkylamines 2 with 3,4-diaroyl-1,2,5-thia- $(1a-c)^1$ and -oxadiazoles (1d) under the influence of 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU).

$$\begin{array}{c}
Ar \\
V \\
N \\
C \\
O \\
Ar
\end{array}$$
+ R-CH₂-NH₂

$$\xrightarrow{DBU}$$

Reaction of 3,4-Diaroyl-1,2,5-thiadiazoles (1a-c) with Benzylamine (2a); Preparation of 3aa, 3ba, and 3ca:

A 1:1.2:1 molar mixture of the 1,2,5-thiadiazole 1 (200 mg), benzylamine (2a), and DBU in toluene (30 ml) is heated under reflux for 5 h. The solvent is then removed in vacuo and the residue is subjected to column chromatography on silica gel (Wako gel, C -300) using benzene as eluent. Products 3aa and 3ba are crystallized from hexane as pale green needles and 3bc as pale yellow plates.

4.7-Diphenyl-6-hydroxymethyl-[1,2,5]thiadiazolo[3,4-c]pyridine(3ab):

A mixture of **1a** (100 mg), **2b** (0.5 ml), and DBU (0.5 ml) in tolucne (30 ml) is heated under reflux for 5 h and the reaction mixture is treated as described above. The compound **3ab** crystallizes as yellow plates from hexane.

Reaction of 1a-c with Glycine Ethyl Ester (2c):

A 1:10:11 molar mixture of 1 (200 mg), 2c·HCl, and DBU in toluene (30 ml) is heated under reflux for 8 h and the reaction mixture is then treated as described above. The compounds, 3ac, 3bc, and 3cc crystallize as pale green needles from hexane.

Table. [1,2,5]Oxa- and [1,2,5]Thiadiazolo[3,4-c]pyridines 3

Prod- uct	Ar	R	Y	Yield [%]	m.p.	Molecular formula ^a	
3aa	C ₆ H ₅	C ₆ H ₅	S	88	187–189°	$C_{23}H_{15}N_3S$	(365.5)
3ba	4-H ₃ C C ₆ H ₄	C_6H_5	S	77	238239°	$C_{25}H_{19}N_3S$	(393.5)
3ca	4-Cl C ₆ H ₄	C_6H_5	S	86	248249°	$C_{23}H_{13}Cl_2N_3S$	(434.3)
3ab	C_6H_5	$HOCH_2$	S	42	152-154°	$C_{18}H_{13}N_3OS$	(319.4)
3ac	C_6H_5	C ₂ H ₅ OOC	S	54	149150°	$C_{20}H_{15}N_3O_2S$	(361.4)
3bc	4-H ₃ C C ₆ H ₄	C ₂ H ₅ OOC	S	18	157-159°	$C_{22}H_{19}N_3O_2S$	(389.5)
3cc	4-Cl C ₆ H ₄	C ₂ H ₅ OOC	S	51	147148.5°	$C_{20}H_{13}Cl_2N_3O_2S$	(430.3)
3da	C_6H_5	C_6H_5	O	13	161°	$C_{23}H_{15}N_3O$	(349.4)

The microanalyses were in satisfactory agreement with the calculated values (C ± 0.36 , H ± 0.15 , N ± 0.31).

The reaction of compounds 1 with benzylamine (2a), β -hydroxyethylamine (2b) and glycine ethyl ester (2c) in the presence of DBU are carried out in refluxing toluene and the results are summarized in the Table. The [1,2,5]thiadiazolo[3,4-c]pyridines (3aa-cc) are obtained in fair to good yields, however, [1,2,5]oxadiazolo[3,4-c]pyridine 3da (pyrido[3,4-c]furazan) is formed in a poor yield and is accompanied by a large amount of tarry products.

As many diarroyl substituted five-membered heterocycles are easily accessible via 1.3-dipolar cycloaddition reactions with diarroylacetylenes, the above reaction might provide a potentially useful method for the preparation of pyridine-condensed five-membered heterocycles.

4.6.7-Triphenyl-[1.2.5]oxadiazolo[3.4-c]pyridine (3da; 4.6.7-Triphenylpyrido[3.4-c]furazan):

A mixture of **1d** (200 mg), **2a** (0.5 ml), and a catalytic amount of DBU in toluene (30 ml) is heated under reflux for 2 h and the reaction mixture is treated as described above. The compound **3da** crystallizes as green needles from hexane.

Received: June 5, 1979

S. Mataka, K. Takahashi, Y. Yamada, M. Tashiro, J. Heterocycl. Chem., in press.