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GRAPHICAL ABSTRACT

Abstract Twenty-five amides were synthesized in almost quantitative yields by microwave-

assisted condensation of arylacetic acids and 2-aryl-ethylamines under solventless

conditions. The N-arylethyl-arylacetylamides are intermediates of the corresponding isoqui-

noline derivates.

Supplemental materials are available for this article. Go to the publisher’s online edition

of Synthetic Communications1 to view the free supplemental file.
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INTRODUCTION

The amide function plays an important role in bioorganic chemistry and is
present in numerous natural products (proteins and peptides), plastics, drugs, and
pesticides.[1–4] Therefore, the synthesis of amides is significant and well-known in
organic chemistry.[5,6] The carboxylic amides may be prepared by the acylation of
amines by carboxylic acids directly above 100 �C or in the presence of well-known
condensing agents, such as carbodiimides[7–9] or benztriazole derivatives[10–13] under
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milder conditions. Additional coupling reagents are bis(2,2,2-trifluoroethoxy)-
triphenylphosphorane,[14] diethyl phosphorobromidate,[15] 2-oxo-3-oxazolinylpho-
sphonate,[16] which can be used under mild conditions and are efficient and cheap.
The activation of carboxylic acids for the preparation of carboxamides can be
achieved by other reagents, such as TiCl4,

[17] Lawesson’s reagent,[18]

Sn[N(TMS)2]2,
[19] N-halosuccinimide=Ph3P,

[20] Cl3CCN=Ph3P,
[21] SO2ClF,

[22]

ArB(OH)2,
[23] (R2N)2Mg,[24] and chlorosulfonyl isocyanate.[25] Amidations were also

described in the presence of trimethylamine-borane in boiling xylene.[26] Last but not
least, the easily available Fe3þ-K-10 montmorillonite clay is mentioned as an
efficient catalyst for amidation.[27] The only disadvantage is that the condensation
is carried out in boiling chloroform for prolonged (7.5–9 h) reaction times.

Microwave (MW) irradiation is a useful tool to conduct reactions efficiently
in short reaction times.[28] Condensation is a typical reaction that may be well
accomplished under MW conditions.[29] Not only thermally well-established
esterifications and amidations of carboxylic acids but also the otherwise thermally
impossible esterifications of phosphinic acids could be performed under MW
irradiation.[30,31] The use of the MW technique is often associated with solventless
conditions offering an additional advantage. Recently, the preparation of amides
under solvent-free conditions has been reported.[32–35]

It was a challenge for us to study the condensation of arylacetic acids with
2-aryl-ethylamines under MW and solventless conditions. The resulting amides
would be valuable intermediates of the Bischler–Napieralski ring-closure reactions.
Beside this, these amides may be the starting materials for a variety of alkaloids or
their synthetic derivatives. For example, amide A was converted to racemic lirinidine
belonging to the family of aporphine alkaloids or to racemic nuciferine, in seven or
eight steps, respectively.[36] Tilacorine belonging to bisbenzylizoquinolines with more
complicated structure, that is, among others, the alkaloid of Tilacora racemosa,[37]

was synthesized from amide B by Pachaly et al.[38–40] The simple preparation of
racemic dihydrothebainone, dihydrocodeinone, and nordihydrocodeinone was
described using amide C.[41]
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RESULTS AND DISCUSSION

First we studied if the use of the MW technique offers an advantage in the con-
densation reaction of phenylacetic acid (1a) and 2-phenylethylamine (2a). Equimolar
mixtures of the reactants were irradiated at 130 �C, 140 �C, and 150 �C to afford the
corresponding amide (3a) in practically quantitative yields after reaction times of
120min, 60min, and 22min, respectively (Scheme 1, Table 1). In the comparative
thermal experiment carried out at 150 �C, the reaction time was 100min (Table 1).
It can be seen that on MW irradiation the amidation became much faster.

Then the optimum temperature of 150 �C was adapted to the condensation of
other model compounds. To be sure, a reaction time of 30min was applied to all
cases. On measuring together the acid (1) and the amine (2), the exothermic forma-
tion of the corresponding salt could be observed. For this, the vial was put into the
MW reactor only after cooling it back to 25 �C.

In the first set of experiments, a series of substituted arylacetic acids (1a–c, f–h)
including 2-naphthyl-acetic acid and 3,4-methylenedioxy-acetic acid were reacted
with 2-phenylethylamine (2a). Next, the arylacetic acids (1a–h) were reacted with
4-methoxyphenylethylamine (2b) and then with 4-chlorophenylethylamine (2c). In
the final stage, the arylacetic acids (1a–h) were condensed with 3-trifluoromethylphe-
nylethylamine (2d) (Scheme 2, Table 2). With 4-nitro substituent in the arylacetic
acid, there was no reaction with any of the arylethylamines.

In all cases, the amides (3a–z) were obtained in almost quantitative yields after
flash column chromatography. Amides 3a–c, 3e, 3i, 3n, 3p, and 3r were described in
the literature but were not characterized. All of the amides (3a–z) (Table 2) prepared
by us have been characterized by 1H and 13C NMR, as well as high-resolution mass
spectrometric (HR-MS) spectral data.

To evaluate the effect of substituents on the reactivity, the amide formation was
carried out, in three different combinations at 140 �C for 30min. First, the unsubsti-
tuted model compounds 1a and 2a were reacted to give amide 3a in 63% conversion.
Then, 4-MeO-phenylacetic acid (1d) was reacted with 4-Cl-phenylethylamine (2c) to
afford amide 2g in a conversion of 69%. Finally, the reaction of 4-Cl-phenylacetic

Scheme 1. Amidation of phenylacetic acid with phenylethylamine.

Table 1. Amidation of PhCH2CO2H with Ph(CH2)2NH2 under MW

and thermal conditions

Mode of

heating

Temperature

(�C)
Reaction

time (min)

Yield of

3a (%) Entry

MW 130 120 95 1

MW 140 60 95 2

MW 150 22 �99 3

D 150 100 �97 4

MICROWAVE-ASSISTED AMIDATION 1493
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acid (1b) with 4-MeO-phenylamine (2b) was carried out providing the amide (3o) in
57% conversion (Table 3). It can be seen that the most advantageous combination
is when the arylacetic acid has an electron-donating substituent (i.e., a MeO group)
in position 4 and the arylethylamine contains an electron-withdrawing substituent
(i.e., a chlorine atom) in the para position. An explanation may be that in this case
the reactants are more reactive. In case of the 4-MeO substituent, the arylacetic acid
(1) is deprotonated to a smaller extent, and hence the C=O moiety remains more

Table 2. Products (3) from the amidation of arylacetic acids (1) and arylethylamines (2) along with the

yields

Acid Amine Product R1 R2 R3 R4 R5 Yield (%) Lit. Entry

1a 2a 3a H H H H H 99 [34] 1

1a 2b 3b H H H MeO H 95 [42,43] 2

1a 2c 3c H H H Cl H 98 [42,43] 3

1a 2d 3d H H H H CF3 99 — 4

1d 2a 3e MeO H H H H 99 [44] 5

1d 2b 3f MeO H H MeO H 99 — 6

1d 2c 3g MeO H H Cl H 99 — 7

1d 2d 3h MeO H H H CF3 99 — 8

1e 2b 3i MeO MeO H MeO H 99 [45] 9

1e 2d 3j MeO MeO H H CF3 99 — 10

1f 2a 3k MeO MeO MeO H H 99 — 11

1f 2b 3l MeO MeO MeO MeO H 99 — 12

1f 2d 3m MeO MeO MeO H CF3 99 — 13

1b 2a 3n Cl H H H H 99 [43] 14

1b 2b 3o Cl H H MeO H 99 — 15

1b 2c 3p Cl H H Cl H 99 [46] 16

1b 2d 3q Cl H H H CF3 98 — 17

1c 2a 3r F H H H H 99 [42] 18

1c 2b 3s F H H MeO H 93 — 19

1c 2d 3t F H H H CF3 99 — 20

1g 2a 3u –CH=CH–CH=CH– H H H 96 — 21

1g 2b 3v –CH=CH–CH=CH– H MeO H 99 — 22

1g 2d 3w –CH=CH–CH=CH– H H CF3 99 — 23

1h 2a 3x –O–CH2–O– H H H 99 — 24

1h 2b 3y –O–CH2–O– H MeO H 98 — 25

1h 2d 3z –O–CH2–O– H H CF3 99 — 26

Scheme 2. Amidation of arylacetic acids with arylethylamine.
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electrophilic. At the same time, the 4-Cl substituent somewhat prevents the
protonation of the amino function of the arylethylamine (2), thus enhancing its
nucleophilicity.

In summary, a convenient and efficient synthesis of N-arylethyl-
arylacetylamides has been elaborated by the MW-assisted and solventless conden-
sation of a series of arylacetic acids and 2-arylethylamines.

EXPERIMENTAL

General Procedure for the Preparation of Amides 3a–z

The acid (1.0mmol) and amine (1.0mmol) were measured in vial. After 3min,
the vial was placed in the MW reactor and the mixture was heated to 150 �C in 3min,
applying 30–50W. After a 30-min reaction time, the crude product was taken up in
5ml methanol and purified by flash column chromatography (using a silica column
of 10 cm and 3% methanol in dichloromethane as the eluent) to afford amides 3a–z,
mostly as crystalline products. Recrystallization from ethanol led to entirely pure
samples.

N-Phenylethyl-phenylacetic Amide (3a)

Mp 92–94 �C (mp[34] 94–96 �C), 1H NMR (CDCl3, 300MHz) d 7.35–7.15 (m,
8H, ArH), 7.02 (d, 2H, J¼ 6.2, ArH), 5.41 (bs, 1H, CONH), 3.52 (s, 2H, CH2C=O),
3.45 (q, 2H, J¼ 6.5, NCH2), 2.72 (t, 2H, J¼ 6.8, CH2);

13C NMR (CDCl3, 75MHz)
d 171.1 (C¼O), 138.8 (Ar), 135.0 (Ar), 129.6 (Ar), 129.2 (Ar), 128.9 (Ar), 128.7 (Ar),
127.5 (Ar), 126.6 (Ar), 44.0 (NCH2), 40.9 (CH2C=O), 35.6 (CH2). HRMS (MþH)þ:
240.1393; C16H18NO requires 240.1388.

The spectral characterization of products 3b–z together with the 1H and 13C
NMR spectra of all compounds (3a–z) can be found online in the Supplementary
Information.
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Table 3. MW-assisted reactions of arylacetic acids (1) with arylethylamines

(2) at 140 �C for 30min

Acid Amine Amide Conversion (%) Entry

1a 2a 3a 63 1

1d 2c 2g 69 2

1b 2b 3o 57 3
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