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Claisen rearrangement of ally1 vinyl ethers is an important general method of carbon- 

carbon bond formation for synthesis of y,b-unsaturated aldehydes and ketones. 1 Syntheses of 

y,b-unsaturated esters and amides are similarly achieved by rearrangements of 2-alkoxy and 2- 

amino-3-oxa-1,5-hexadienes. 
1 

oxa-1,5-hexadienes, allyloxy 

conversion of ally1 alcohols 

several noteworthy features. 

We now report: 1) the first Claisen rearrangements of 1-siloxy-3- 

ketone enol silyl ethers2, and 2) application of this process to 

into ally1 ketones. This new synthesis of ally1 ketones has 

Ally1 ketones are produced without accompanying formation of the 

corresponding conjugated vinyl ketones. 3 Substitution of an acyl group for the hydroxyl group 

involves regiospecific carbon-carbon bond formation at the vinyl terminus of the original ally1 

system and migration of the x-bond. 495 

Three methods were examined for the conversion of ally1 alcohols 1 into a-allyloxyke- 

tones 3 (see table): treatment of 1 with a diasoketone in the presence of boron trifluoride 

etherate (method A); treatment of the derived sodium alkoxides with an epoxide7 followed by 

oxidation of the resulting alloxy alcohol8 (method B); and treatment of the derived sodium 

alkoxide with 2-methoxyallyl bromide' followed by hydrolysis (method C). We found that 
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Table. Preparation of Ally1 Ketones from Ally1 Alcohols 

ENTRY ALLYL ALLYLOXY a-SILOXY ALLYL % YIELD 
ALCOHOL 1 KETONE 2 ALDEHYDE 5 KETONE 2 

BP(%yield) BP(%yield) (see ref 14)d 

B 
112-116"/ 
3.5mm(79)a 

70-73O/ 
0.05nml(70) / -Ph 

95 

4 
q 
/ H 

5 WH 

6 

7 

8 

9 

10 

11 OH 

65-7Oo/c 70-7s0/ 
Smm(98) 4.5nml(90) 

120-125;/ 
lmm(93) 

(2~)~ 

(99)d 

(99)d 

104-llo"/ 
0.9mm(90)a 

(98)d 

(3Wb (8Wd 

60-62'/ 
lmm(97)c 

67-70°/ 
0.6mm(84) 

125-127'L 72-74"/ 
lOmm(97) O.Smm(92) 

83-85O/ 
O.Smm(91) 

52-53O/ 
O.Smm(88) 

68-73O/ 
lmm(73)c 

70-75O/ 
0.5Inm(84) 

h 

80 

83 

81 

83 

93 

72 

84 

98 

63 

72 

(a) PhCOCHN2/BF3/Et20 +PhCOCH20R: (b) 1.) NaH; %.)stYrene oxide; 3.) pyridinium chloro 

chromate; purified by molecular distillation: (c) 1.) NaH/THP/WA; 2.) 2-methoxyallyl 

bromide; 3.) H30+: (d) not distilled, yields determined with an internal standard by 

vpc or 'H-nmr; yields for all distilled products are for isolated product. 
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a-alloxy ketones afford a-allyl-a-aryl (or alkyl)-a-trimethylsiloxy aldehydes 2 upon treat- 

ment with chlorotrimethyl silane and triethyl amine in dimethylformamide. This conversion 

presumably involves Claisen rearrangement in situ of intermediate enol silyl ethers 4. 11 Al_ 

ternative reactions, involving [1.2] 
12 

or [2.3] 
13 sigmatropic rearrangements 5 -t 1, apparently 

OSiMe; OSiMe_ 

are not a problem since yields of 5 are good to excellent (see table). Either silylation of 5 

is much faster than rearrangement, or 5 is not an intermediate in the enol silylation of 

a-allyloxy ketones 2. 
0 0 

c_ Y/A_ -0 ii+ \ - 

6 7 - - 

The a-siloxy aldehydes 1 were converted to ally1 ketones 2 by a one pot hydrolysis-oxida- 

tion process with aqueous methanolic periodic acid. 
14 

The regiospecificity of the overall al- 

lyl alcohol to ally1 ketone conversion is evident from table entries 2-5, 10 and 11. The pre- 

sent method complements syntheses of ally1 ketones involving alkylation of acyl carbanion- 

equivalents with allylic halides. 
13,15 Furthermore, the new synthetic method should permit 

stereospecific conversion of ally1 alcohols into ally1 ketones such as fi+ 9. - 
0 

M 

y> 

Me 

I - TY R / 

8 OH 9 - - 
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