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Various poly-substituted benzenes including terphenyl, quaterphenyl, and quinquephenyl were synthe-
sized starting from the Morita–Baylis–Hillman bromides. The synthesis was carried out via a three-step
protocol, namely, a sequential Wittig reaction, Diels–Alder reaction with DMAD, and an aerobic
oxidation.
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Various chemical transformations of the Morita–Baylis–Hillman
(MBH) adducts have been studied extensively during the last two
decades.1,2 Among them the synthesis of aromatic compounds
including poly-substituted benzenes has received a special
attention.2

Due to our continuous interest for the synthesis of poly-
substituted benzene derivatives,2c–m we presumed that a Diels–
Alder reaction between a 1,3-diene derivative 2a, prepared from
the MBH bromide 1a via a Wittig reaction,3 and a suitable
dienophile such as dimethyl acetylenedicarboxylate (DMAD)4

could provide an efficient way to synthesize poly-substituted
benzene 4a, as shown in Scheme 1.

The preparation of (E,E)-1,3-diene derivative 2a was carried out
via a sequential bromination of a MBH adduct with HBr to form
1a,5 formation of a phosphonium salt with PPh3, and a Wittig
reaction with benzaldehyde in the presence of K2CO3 in CH3CN.3

A subsequent Diels–Alder reaction of 2a with DMAD in toluene
ll rights reserved.
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produced dihydrobenzene derivative 3a. At the outset of our
experiment, we carried out an aerobic oxidation of crude 3a in
the presence of DBU (0.5 equiv) under O2 balloon atmo-
sphere.2d,2f,4a As expected, a terphenyl derivative 4a was obtained
in moderate yield (45%); however, an appreciable amount of
unknown compound (vide infra, 5a, 22%) was isolated. The
unknown compound has five different ester groups and must
be formed by the reaction of 3a and DMAD that remained in the
reaction mixture. The structure of this unknown compound was
confirmed as a tricyclo[3.2.1.02,7]oct-3-ene7 derivative 5a by
various spectroscopic data and unequivocally by its crystal
structure.8,9 The crystal structures of 3a and 5a are shown in
Figure 1.8 The tricyclo[3.2.1.02,7]oct-3-ene skeleton has been
found in many biologically interesting substances such as
Salvileucalin B7a,7b and various staphirine alkaloids.7c,d Thus, the
synthesis of this interesting backbone has received much
attention.7h–n
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Table 1
Synthesis of poly-substituted benzene derivativesa

Entry 1,3-Diene Dihyddrobenzeneb (%) Productc (%)

1

Ph
E

Ph
2a (68)

E

E

E
Ph

Ph
3a (74)

E

E

E
Ph

Ph
4a (96)

2

Ph
E

Ar1

2b (71)

E

E

E
Ph

Ar1

3b (72)

E

E

E
Ph

Ar1

4b (97)

3

Ph
E

Ar2

2c (82)

E

E

E
Ph

Ar2

3cd

E

E

E
Ph

Ar2

4c (64)

4

Ph
E

Ar3

2d (51)

E

E

E
Ph

Ar3

3d (77)

E

E

E
Ph

Ar3

4d (94)

5

Ph
E

Ar4

2e (68)

E

E

E
Ph

Ar4

3e (64)

E

E

E
Ph

Ar4

4e (97)

6

Ar4
E

Ph
2f (69)

E

E

E
Ar4

Ph
3f (63)

E

E

E
Ar4

Ph
4f (95)

7

Ar4
E

Ar4

2g (65)

E

E

E
Ar4

Ar4

3g (68)

E

E

E
Ar4

Ar4

4g (95)

a E = COOMe, Ar1 = p-chlorophenyl, Ar2 = p-nitrophenyl, Ar3 = p-methoxyphenyl, Ar4 = p-biphenyl.
b Conditions: diene 2 (1.0 mmol), DMAD (3.0 equiv), toluene, reflux, 40 h.
c Conditions: dihydrobenzene 3 (0.5 mmol), DBU (0.2 equiv), toluene, rt, 2 h.
d 1,2-Dichlorobenzene, 160 �C, 20 h, and 3c was not isolated (see text).

Figure 1. ORTEP drawings of compounds 3a and 5a.
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When we subjected pure dihydrobenzene 3a (74%, entry 1 in
Table 1) in an aerobic oxidation condition a terphenyl 4a was iso-
lated in high yield (96%),6 whereas the reaction of 3a and DMAD in
the presence of a catalytic amount of DBU (0.1 equiv) produced 5a
in good yield (63%),9 as shown in Scheme 2. Although the reaction
was performed under N2 balloon atmosphere, the oxidation prod-
uct 4a was also formed in small amount (7%).10 The mechanism for
the formation of 5a could be proposed, as shown in Scheme 2.
DBU-catalyzed isomerization of the double bond of 3a and a subse-
quent deprotonation generated a carbanion intermediate I. An
intermolecular conjugate addition of I to DMAD and following
successive intramolecular conjugate additions afforded 5a.11

Encouraged by the results, various 1,3-diene derivatives 2b–g
were prepared from the corresponding MBH bromides,5 and the
syntheses of poly-substituted benzenes 4b–g were carried out.
The results are summarized in Table 1. The syntheses of dihydro-
benzenes 3b and 3d–g were carried out by the Diels–Alder reaction
of 2b and 2d–g with DMAD in refluxing toluene for 40 h. During
the preparation of dihydrobenzenes 3b and 3d–g, the correspond-
ing aromatized compounds 4b and 4d–g were observed in trace
amount (<5%). The Diels–Alder reaction of p-nitro derivative 2c
and DMAD was sluggish in refluxing toluene, thus we carried out
the reaction at 160 �C in o-dichlorobenzene for 20 h (entry 3). It
is interesting to note that an appreciable amount of p-nitro deriv-
ative 4c was formed during the preparation of 3c along with some
intractable side products even under N2 balloon atmosphere. Thus
we separated 3c and 4c together using a short-path column
chromatography and the mixture was treated with DBU to obtain
4c. However, the yield of 4c was moderate (64%). For the other
entries (entries 2 and 4–7), a subsequent aerobic oxidation of
dihydrobenzenes was carried out under the same conditions for
the preparation of 4a. In this way, various terphenyls 4b–d,4b,4c,4e
MeOOC

Ph
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quaterphenyls 4e and 4f,12 and quinquephenyl 4g4c,12a,12b were
synthesized in high yields.

As shown in Scheme 3, the reactions of 3b and 3g with DMAD in
the presence of a catalytic amount of DBU (0.1 equiv) afforded the
corresponding tricyclic compounds 5b and 5c, respectively, in
moderate yields. As in the previous synthesis of 5a, trace amounts
of the aromatized compounds 4b and 4g were formed via an
aerobic oxidation even under N2 balloon atmosphere.

As a next entry, we examined a Diels–Alder reaction between
2a and N-phenylmaleimide,13,14 as shown in Scheme 4. In the
reaction, the corresponding Diels–Alder adduct 3h was isolated
in 75% as a single diastereomer; however, the stereochemistry
was not confirmed decisively.14 Compound 3h was converted into
a polyarylphthalimide 4h by DBU-catalyzed aerobic oxidation in
DBU (0.2 equiv)
toluene MeOOC

Ar4

Ph
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N Ph
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O

N Ph

O
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moderate yield (66%). Similarly, the reaction of 2f and N-phenyl-
maleimide afforded 3i in 74%. DBU treatment of 3i afforded
polyarylphthalimide 4i in moderate yield (62%).15 The oxidation
of tetrahydrobenzenes 3h and 3i required somewhat a longer
reaction time (15 h) than the previous dihydrobenzene derivatives
3a–g (2 h).

In summary, we disclosed an efficient synthesis of poly-substi-
tuted aromatic compounds from MBH bromides via a sequential
Wittig reaction, Diels–Alder reaction with DMAD or N-phenyl-
maleimide, and an aerobic oxidation process. In addition, an
interesting consecutive conjugate addition pathway to form a no-
vel tricyclo[3.2.1.02,7]oct-3-ene scaffold has been found
serendipitously.
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