ChemComm

Chemical Communications

www.rsc.org/chemcomm
Volume 47 | Number 23 | 21 June 2011 | Pages 6481-6732

Synthesis of the B-seco limonoid scaffold \dagger

Hannah Schuster, ${ }^{a b}$ Rémi Martinez, ${ }^{a}$ Hanna Bruss, ${ }^{a b}$ Andrey P. Antonchick, ${ }^{a}$ Markus Kaiser, ${ }^{c d}$ Markus Schürmann ${ }^{b}$ and Herbert Waldmann*ab

Received 10th March 2011, Accepted 15th April 2011

DOI: 10.1039/c1cc11388g

The underlying stereochemically complex and densely functionalized scaffold of the B-seco limonoids was synthesized employing an Ireland-Claisen rearrangement as key transformation.

Members of the highly oxygenated B-seco limonoids (Fig. 1) ${ }^{1}$ like 21-hydroxytoonacilide $\mathbf{1}^{2}$ and prieurianin $\mathbf{2}^{3}$ display diverse and potent bioactivities. Remarkably, prieurianin $\mathbf{2}$ induces "appetite loss" in insects at the application level close to the leading compound azadirachtin. ${ }^{4}$

In the light of the biology oriented synthesis (BIOS) concept, ${ }^{5}$ we sought a strategy to access the B-seco limonoid scaffold.

The richly decorated and stereochemically complex B-seco limonoids are exceptionally challenging synthesis targets. For instance, in 21-hydroxytoonacilide $\mathbf{1}$ and prieurianin 2, an A-ring and a bicyclic trans-fused C-D ring system equipped with an exo-methylene group and six to seven stereogenic centers including two contiguous asymmetric quaternary centers at the ring-junction are linked by a C9-C10 bond surrounded by dense functionality including a quaternary carbon atom in the A ring.

Inspired by the decisive role of a Claisen rearrangement in the synthesis of azadirachtin by Ley et al., ${ }^{6}$ we envisioned that

21-hydroxytoonacilide (1)

prieurianin (2)

Fig. 1 Structures of representative B-seco limonoids 21-hydroxytoonacilide (1) and prieurianin (2).

[^0]

لRCM

8

Scheme 1 Retrosynthetic analysis of the B-seco limonoid scaffold.
the C9-C10 linkage could be constructed by means of an Ireland-Claisen rearrangement (Scheme 1). It was planned to construct the all-carbon quaternary center at C13 from known enone $\mathbf{8}^{7}$ by substrate controlled α-functionalization and to establish the second quaternary center at C14 by 1,2-addition to the keto group. Finally, ring closing metathesis (RCM) would give rise to bicyclic system 5. Very recently, an acetal Claisen rearrangement was successfully employed in the synthesis of (\pm)-cipadonoid B. ${ }^{8}$

For feasibility and stereochemical model studies rearrangement precursors $\mathbf{1 7}$ (Scheme 2) were synthesized as suitable model systems. To this end enone $\mathbf{8}^{7}$ was prepared from (-)quinic acid $9 .{ }^{9}$ The Baylis-Hillman reaction gave the desired hydroxymethylated product, which was subsequently protected as TBDPS-ether 10. Substrate controlled α-methylation of the lithium enolate proceeded with full stereocontrol, ${ }^{10}$ presumably due to the conformational rigidity of the butane-2,3-diacetal (BDA) protected trans-diequatorial diol ${ }^{11}$ and the stereoelectronic preference for axial attack on the intermediary enolate. Luche reduction with unhindered axial attack of the hydride yielded alcohol $\mathbf{1 1}$ whose configuration was determined by ${ }^{1} \mathrm{H}$ NMR, nOe and Mosher ester analysis (see the arrows in Scheme 2). Subsequent Mitsunobu inversion of configuration established the required stereochemistry at C14. Selective cleavage of the BDA -protecting group with TFA in aqueous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ released triol $\mathbf{1 2}$ which was masked with protecting groups of different size and chemical nature to examine the face-selectivity of the Ireland-Claisen rearrangement. From 13-15 the silyl protecting groups were selectively removed, and the liberated primary alcohols were esterified with an undecorated model A-ring. Additional silylation of the secondary alcohol at C 14 in 16c then furnished the targeted rearrangement precursors 17a-c.

13: $R^{1}=R^{2}=R^{3}=M O M$ 14: $R^{1}=R^{2}=R^{3}=$ Piv 15: $R^{1}=R^{2}=R^{3} T B S$

Scheme 2 Synthesis and Ireland-Claisen rearrangement of model compounds 17a-c. Reagents and conditions: (a) CSA, 2,3-butanedione, trimethylorthoformate, MeOH , reflux, $16 \mathrm{~h}, 93 \%$; (b) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, rt, 24 h, quant.; (c) silica-gel supported $\mathrm{NaIO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1)$, rt, 30 min ; quant.; (d) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 85 \%$; (e) paraformaldehyde, imidazole, $\mathrm{THF} / 1 \mathrm{M} \mathrm{NaHCO} ~(1: 1), ~ r t, ~ 2.5 ~ h, ~$ 74%; (f) TBDPSCl, DMAP, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}, 93 \%$; (g) LiHMDS, MeI, THF/DMPU ($10: 1$), $-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, 98%; (h) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 86 \%$; (i) $\mathrm{Ph}_{3} \mathrm{P}$, para-nitrobenzoic acid, DEAD, toluene, 15 h ; (j) $\mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$, aq. sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$, rt, $2 \mathrm{~h}, 85 \%$ (2 steps); (k) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}$ (2:1:0.1), rt, $10 \mathrm{~min}, 85 \%$; (l) DIPEA, MOMCl, NaI, THF, $65^{\circ} \mathrm{C}, 4.5 \mathrm{~h}, 98 \%$ of $\mathbf{1 3}$; (m) PivCl, DMAP, pyridine, rt, 4 days, 78% of 14; (n) TBSCl, imidazole, DMF, rt, $18 \mathrm{~h}, 92 \%$ of $\mathbf{1 5}$; (o) synthesis of 16a: 13, TBAF, THF, rt, $2 \mathrm{~h}, 95 \%$; synthesis of 16b: 14, HF-pyridine, THF, rt, 24 h , 71%; synthesis of $\mathbf{1 6 c}$: $\mathbf{1 5}, 10 \% \mathrm{NaOH}-\mathrm{MeOH}$, reflux, $6.5 \mathrm{~h}, 72 \%$; (p) synthesis of $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$: EDC-HCl, DMAP, cyclohexane carboxylic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; for $\mathbf{1 7 a}$: 92% yield; for 17b: 95% yield; synthesis of $\mathbf{1 7} \mathbf{c}$: (i) EDC-HCl, DMAP, cyclohexane carboxylic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $20 \mathrm{~h}, 79 \%$; (ii) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 66 \%$; (q) KHMDS, TMSCl, toluene, $-78{ }^{\circ} \mathrm{C}$ to rt to $85^{\circ} \mathrm{C}$: for $18 \mathrm{a}: 89 \%$ yield, de $=76 \%$; for $\mathbf{1 8 b}$: 90% yield, de $=94 \%$; for $\mathbf{1 8 c}$: 100% yield, $\mathrm{de}=100 \%$.

Treatment of $\mathbf{1 7 a - c}$ with KHMDS and TMSCl in toluene yielded rearrangement products $\mathbf{1 8 a} \mathbf{- c}$ in 89% to quantitative yield and with de-values ranging from 76% to 100%. nOe experiments revealed that the configuration of the newly formed stereocenter matches the stereochemistry of the target natural product scaffold. The facial selectivity is strongly determined by the size of the protecting group (Scheme 2). With the small MOM group the lowest selectivity was observed, and the bulky TBS ether gave only one diastereomer.

Analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of silyl-protected $\mathbf{1 7 c}$ revealed that the coupling constant for H 11 and H 12 (toonacilide numbering, see Fig. 1) is 7.2 Hz whereas $J_{\mathrm{H} 12 / \mathrm{H} 13}=3.8 \mathrm{~Hz}$. These values indicate that $\mathbf{1 7 c}$ adopts a conformation with the two bulky OTBS groups in the pseudo-equatorial position (Fig. 2a). The OTBS group at C14 accordingly adopts a

18c
b

$J_{\mathrm{H} 11 / \mathrm{H} 12}=8.0 \mathrm{~Hz}$

C
pseudo-equatorial attack
$s i$-attack at $\mathbf{C 9}$

Fig. 2 Conformations of rearrangement precursors 17 c and 4 and possible transition states involved in the Ireland-Claisen rearrangements. In (a) and (b) the cyclohexyl rings are left out for clarity of presentation.
pseudo-axial orientation which minimizes allylic $\mathrm{A}^{1,2}$-strain. Ireland and Varney previously demonstrated that in analogous rearrangements of cyclohexenyl acetates axial attack is strongly preferred over equatorial formation of the new C - C -bond. ${ }^{12}$ By analogy in the rearrangement of model compounds $\mathbf{1 7}$ transition state A (Fig. 2) may be preferably passed in which the silyl ketene acetal (the cyclohexyl ring is omitted for clarity) attacks the double bond in the cyclohexene ring from the pseudo-axial direction. Most likely increasing steric demand of the protecting groups at C11, C12 and C14 increasingly locks the cyclohexene in the conformation shown in Fig. 2.

For synthesis of the analogous bicyclic rearrangement precursor 4 (Scheme 3) enone $\mathbf{8}$ was converted to the silyl enol ether, brominated with NBS, and subsequently converted to α-allylated product 19 using allyltributyltin and AIBN. ${ }^{10 a}$ For construction of the quaternary centre at C13 again substrate control was exploited, and the potassium enolate of $\mathbf{1 9}$ was trapped with MeI to furnish the desired product as a single diastereomer. Isomerization of the terminal double bond with cat. $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and subsequent Baylis-Hillman reaction yielded compound 20. For the stereoselective establishment of the second quaternary center we intended to employ an unprotected alcohol in the β-position, i.e. at C12 as a stereodirecting group. For selective masking the butane-2,3-diacetal was cleaved under acidic conditions and both the primary and the allylic hydroxy groups were selectively protected as TBS-ethers to give alcohol 7.

For the stereoselective 1,2-allylation various reagents (e.g. allyl boronates, -stannanes and -silanes, allyl-indium, -magnesium, -cerium and -zinc reagents) and conditions were investigated. The best result was obtained with tetraallyltin and BuLi at $-78{ }^{\circ} \mathrm{C}$ in THF. Under these conditions a $1: 2$ mixture of diastereomers was obtained. The stereochemistry was unambiguously confirmed by crystal structure analysis of a derivative of the major diastereomer (see the ESI \dagger). In this

Scheme 3 Synthesis and Ireland-Claisen rearrangement of bicyclic allyl ester precursor 4. Reagents and conditions: (a) LiHMDS, TMSCl, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) NBS, THF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 68 \%$ (2 steps); (c) allyltributyltin, AIBN, toluene, $80{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}, 81 \%$, de $=80 \%$; (d) KHMDS, THF, $30 \mathrm{~min}-78{ }^{\circ} \mathrm{C}$, then MeI, 30 min rt, 74%, de $=100 \%$; (e) $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, toluene, $65^{\circ} \mathrm{C}$, 2 days, 70% (81% brsm); (f) paraformaldehyde, imidazole, THF/1 M NaHCO 3 (2:1), rt, $19 \mathrm{~h}, 74 \%$; (g) TFA/ $\mathrm{H}_{2} \mathrm{O}$ (3:1), rt, $30 \mathrm{~min}, 84 \%$; (h) TBSCl, imidazole, DMF, rt, $18 \mathrm{~h}, 94 \%$; (i) tetraallyltin, $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \mathrm{~min}, 72 \%$, $\mathrm{dr}=c a .2: 1$; (j) Grubbs $\mathrm{I}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 18 h ; (k) HF-pyridine, THF, $0{ }^{\circ} \mathrm{C}$ to rt, $20 \mathrm{~h}, 99 \%$; (l) EDC- $\mathrm{HCl}, 4$-oxocyclohexyl carboxylic acid, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 80 \%$; (m) DIPEA, MOMCl, NaI, THF, $50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 62 \%$; (n) LiHMDS, supernatant of a centrifuged mixture of $\mathrm{TMSCl} / \mathrm{NEt}_{3}(\mathrm{v} / \mathrm{v}=1 / 1)$ and toluene, toluene, $-78^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in $6 \mathrm{~h}, 60 \mathrm{~h}$ at $65^{\circ} \mathrm{C}, 88 \%$ yield, $\mathrm{dr}=1: 2(\mathbf{3}: \mathbf{2 2})$.
case the preference for axial attack predominates over the stereodirecting influence of the β-hydroxy group.

Ring closing metathesis and subsequent selective deprotection of the primary silyl ether successfully delivered bicyclic triol 21. Esterification and protection of the remaining hydroxy groups as MOM-ethers, which was accompanied by silyl migration, gave rise to rearrangement precursor 4.

For rearrangement of allyl ester 4 variation of the reaction conditions was necessary. The Ireland-Claisen rearrangement proceeds successfully upon gradual warming of the reaction mixture from $-78^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ over a period of 6 h . Also it was crucial to employ the supernatant of a centrifuged mixture of $\mathrm{TMSCl}, \mathrm{NEt}_{3}$ and toluene instead of the unactivated TMSCl for formation of both the required intermediate silyl ketene acetal and the silyl enol ether of the cyclohexanone. Under these conditions the Ireland-Claisen rearrangement proceeded smoothly to give a 1:2 mixture of isomers $\mathbf{3}$ and $\mathbf{2 2}$ in 88% combined yield. The configuration of the diastereomers was assigned based on the coupling constants recorded for the protons at C9 and C11 and nOe signal enhancements (Scheme 3).

In contrast to the high face-selectivity in the synthesis of model systems $\mathbf{1 8 a} \mathbf{- c}$, the rearrangement to bicyclic products

3 and 22 proceeds with low diastereoselectivity and with preference for the undesired stereoisomer at C 9 which must be formed by means of pseudo-equatorial attack (Fig. 2b).

We assume that bicyclic intermediate $\mathbf{4}$ is conformationally more rigid than cyclization precursors $\mathbf{1 7}$, such that transition states \mathbf{B} and \mathbf{C} can compete without preference for a conformation that clearly favours axial attack. ${ }^{13}$ The synthetic strategy described here should facilitate the total synthesis of natural products with B-seco limonoid scaffold and analogues thereof and fuel investigations aimed at unraveling the molecular basis for their manifold biological activity.

This research was supported by the European Research Council (ERC European Advanced Investigator Grant to H.W.), the Max Planck Society and the Fonds der Chemischen Industrie (Kekulé-stipend to H.S.).

Notes and references

1 Recent review: B. Heasley, Eur. J. Org. Chem., 2011, 19-46.
2 P. K. Cheplogoi and D. A. Mulholland, Phytochemistry, 2003, 62, 1173-1178.
3 (a) C. W. L. Bevan, D. E. U. Ekong and D. A. H. Taylor, Nature, 1965, 206, 1323-1325; (b) V. P. Gullo, I. Miura, K. Nakanishi, A. F. Cameron, J. D. Connolly, F. D. Duncanson, A. E. Harding, R. McCrindle and D. A. H. Taylor, J. Chem. Soc., Chem. Commun., 1975, 345-346.
4 Z. Lidert, D. A. H. Taylor and M. Thirugnanam, J. Nat. Prod., 1985, 48, 843-845.
5 (a) S. Wetzel, R. S. Bon, K. Kumar and H. Waldmann, Angew. Chem., Int. Ed., 2010, in press; (b) R. Bon and H. Waldmann, Acc. Chem. Res., 2010, 43, 1103-1114; (c) K. Kumar and H. Waldmann, Angew. Chem., Int. Ed., 2009, 48, 3224-3242; (d) A. Nören-Müller, I. Reis Corrêa Jr., H. Prinz, C. Rosenbaum, K. Saxena, H. Schwalbe, D. Vestweber, G. Cagna, S. Schunk, O. Schwarz, H. Schiewe and H. Waldmann, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 10606-10611; (e) M. A. Koch, L.-O. Wittenberg, S. Basu, D. A. Jeyaraj, E. Gourzoulidou, K. Reinecke, A. Odermatt and H. Waldmann, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16721-16726; (f) M. A. Koch, A. Schuffenhauer, M. Scheck, M. Casaulta, A. Odermatt, P. Ertl and H. Waldmann, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 17272-17277.
6 (a) G. E. Veitch, E. Beckmann, B. J. Burke, A. Boyer, C. Ayats and S. V. Ley, Angew. Chem., Int. Ed., 2007, 46, 7633-7635; (b) G. E. Veitch, E. Beckmann, B. J. Burke, A. Boyer, S. L. Maslen and S. V. Ley, Angew. Chem., Int. Ed., 2007, 46, 7629-7632.
7 M. Barros, C. Maycock and M. Ventura, J. Chem. Soc., Perkin Trans. 1, 2001, 166-173.
8 J. M. Faber and C. M. Williams, Chem. Commun., 2011, 47, 2258-2260.
9 C. L. Arthurs, K. F. Lingley, M. Piacenti, I. J. Stratford, T. Tatic, R. C. Whitehead and N. S. Wind, Tetrahedron Lett., 2008, 49, 2410-2413.
10 The same stereoselectivity has been observed with use of other electrophiles: (a) L. Murray, P. O’Brien and R. Taylor, Org. Lett., 2003, 5, 1943-1946; (b) S. Marchart, J. Mulzer and V. S. Enev, Org. Lett., 2007, 9, 813-816.
11 E. Lence, L. Castedo and C. Gonzalez-Bello, Chem. Soc. Rev., 2008, 37, 1689-1708.
12 R. E. Ireland and M. D. Varney, J. Org. Chem., 1983, 48, 1829-1833.
13 Furthermore, MM2 conformational calculations indicate that the C11-oxygen is within H -bonding distance to the terminal methyl $\mathrm{C}-\mathrm{H}$ of the C 14 MOM group, thus blocking a pseudo-axial approach.

[^0]: ${ }^{a}$ Max-Planck-Institut für molekulare Physiologie, Chemische Biologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany. E-mail: herbert.waldmann@mpi-dortmund.mpg.de; Fax: + 492311332499
 ${ }^{b}$ Technische Universität Dortmund, Fakultät Chemie, Chemische Biologie, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
 ${ }^{c}$ Universität Duisburg-Essen, Zentrum für medizinische Biotechnologie, Chemische Biologie, Universitätsstraße, D-45117 Essen, Germany
 ${ }^{d}$ Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, D-44227 Dortmund, Germany
 \dagger Electronic supplementary information (ESI) available. See DOI: 10.1039/clcc11388g

