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Abstract: An enantioselective synthesis of (+)-ricciocarpin A is de-
scribed starting from (+)-karahana lactone as an enantiopure build-
ing block. This synthesis involves a stereofacially directed
diastereoselective hydroboration for the installation of the required
stereogenic center, and the efficient conversion of an intermediate
hydroxyaldehyde to the one-carbon homologated cyanide, using the
mild formation of a cyanohydrin followed by an one-pot two-step
Barton–McCombie double deoxygenation sequence of the hydroxyl
moieties.
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The furanosesquiterpene lactone (+)-ricciocarpin A (1,
Figure 1), isolated1 from the liverwort Ricciocarpos
natans, exhibits potent molluscicidal activity against the
water snail Biomphalaria glabrata, a vector of
schistosomiasis2 (bilharziazis). For this reason, several ra-
cemic syntheses of ricciocarpin A have been published,3

but none of these allows an easy transition to an enantio-
selective version. At this time, two enantioselective syn-
theses of ricciocarpin A have been published.4 These
syntheses use either a ring-closing metathesis4a,b or a con-
jugate radical addition4c as the key step for the construc-
tion of the six-membered rings, which are approaches
quite different from our present strategy.

Figure 1

A few years ago, we reported5 the synthesis of both enan-
tiomers of karahana lactone (Figure 1) and showed the
utility of these enantiopure building blocks for the synthe-
sis of natural monocyclic sesquiterpenes6 or Taxol® A-
ring subunit.7 Based upon a related methodology, we
present here the enantioselective total synthesis of the
molluscicidal furanosesquiterpene (+)-ricciocarpin A (1)

with the aid of a directing provisional hydroxyl group and
a diastereofacial selectivity for the key steps. Scheme 1
shows a synopsis of this synthetic strategy.

Scheme 1

The starting material is (+)-karahana lactone obtained
from (S)-4-hydroxy-3-methyl-cyclohex-2-en-1-one5 [(–)-
2]. The absolute stereochemistry of this alcohol controls
the relative (and consequently the absolute) configuration
of the newly created stereogenic centers at C-1 and then
C-2. Having thus served as a control element, this auxilia-
ry hydroxyl group is eliminated later in the synthesis with-
out resort to specific additional steps (Scheme 2).
Subjecting (+)-karahana lactone to a hydroboration–oxi-
dation sequence using BH3·SMe2 and oxidative work up
with H2O2, afforded the primary alcohol (+)-3 as a single
stereoisomer in 85% isolated yield (mp 84 °C). The ste-
reochemistry of (+)-3 was not proven at this stage but
unequivocally established through X-ray crystallography
analysis8 carried out on the nicely crystalline TBDMS
(tert-butyldimethylsilane) derivative (+)-4 obtained using
the standard procedure.9 Hydride reduction of (+)-4
with DIBAL-H (diisobutylaluminium hydride) in toluene
at –78 °C gave exclusively the hydroxy aldehyde (+)-5 in
94% yield. In keeping with our plan, elaboration of hy-
droxyaldehyde (+)-5 to compound (+)-7 next required
deoxygenation of the auxiliary hydroxyl substituent and
conversion of the aldehyde function to the one carbon ho-
mologated cyanide. This could be conveniently combined
without resort to specific additional steps. Thus, conver-
sion of (+)-5 to the cyanohydrin 6 (mixture of diastereo-
mers, 96% yield)10 followed by Barton–McCombie
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reaction11 accomplished double deoxygenation to furnish
the target molecule (+)-712 in 65% overall yield.

For the subsequent required lactonization of (+)-7
(Scheme 3), a number of conditions were explored, using
hydrochloric acid or para-toluenesulfonic acid in various
solvents including methanol, THF and toluene. All of the
conditions applied gave either a mixture of products or a
sluggish reaction with the exception of para-toluene-
sulfonic acid (2.2 equiv) in refluxing toluene. With this
combination, the reaction occurred cleanly to afford the
desired d-lactone (–)-813 exclusively in 85% yield. With
the desired bicyclic lactone (–)-8 in hand, the introduction
of the furan group was addressed. For this purpose, expo-
sure of (–)-8 to 2.3 equivalents of 3-lithiofuran14 in diethyl
ether at –78 °C, provided a 1:4 mixture of the expected
hydroxyketone 9 and the corresponding hemiketal 9¢ in
84% yield. Oxidation of the so-obtained 9/9¢ mixture
with tetrapropylammonium perruthenate (TPAP)15 deliv-
ered the ketoaldehyde (–)-10 with high efficiency (97%
yield) and oxidation of the aldehyde group with NaClO2

(sodium chlorite),16 using 2-methyl-2-butene as the chlo-
rine scavenger,17 provided the keto acid (+)-1118 in 81%
yield. Exposure of (+)-11 to the reduction conditions de-
scribed by Luche19 gave (+)-ricciocarpin A (1) and the C-
3 epimer as a 6:1 mixture, respectively, in 85% yield. The
two diastereomers cannot be separated by column chro-
matography (silica gel) but they were perfectly character-
ized by capillary GC analysis (WCOT fused silica
column; CP-Wax-52CB stationary phase). Two succes-

sive recystallizations (MeOH) afforded spectroscopically
pure (+)-ricciocarpin A (1). The spectral and analytical
characteristics of the target molecule were identical to
those reported in the literature.4,20

In conclusion, we have proposed a highly enantioselective
new route to the molluscicidal sesquiterpenoid (+)-riccio-
carpin A utilizing the aid of a provisional hydroxyl group,
a diastereofacial selectivity and a specific homologation
sequence as the key steps. The application of this method-
ology to the synthesis of other furanosesquiterpenes is in
progress and will be given in due course.
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