
DOI: 10.1002/chem.201203293

Dual Nucleophilic/Electrophilic Capture of In Situ Generated Iminium
Ethers: Towards the Synthesis of Functionalized Amide Building Blocks

Bo Peng, Daniel H. O�Donovan, Igor D. Jurberg, and Nuno Maulide*[a]

Iminium ethers (or oxazacarbenium ions) are desirable re-
active intermediates due to their ambident electrophilicity
and ability to react with a wide range of nucleophiles.[1]

These species are ideally suited to applications that require
the rapid generation of structural diversity because a single
iminium ether can potentially give rise to a large variety of
different products. Iminium ethers have also been used for
the preparation of natural products and bioactive mole-
cules.[2] However, their synthetic utility has been limited by
the relatively small range of useful methods for their gener-
ation. Common procedures rely on the inter- or intramolec-
ular O-alkylation of amides by using strong electrophiles
(Scheme 1 a),[3] the N-alkyla-
tion of oxazolines (Sche-
me 1 b),[4] and more recently,
Aub��s procedure for prepar-
ing iminium ethers through the
Schmidt reaction of ketones
with 2-azidoethanol (Sche-
me 1 c).[5] Many of these meth-
ods are limited to a narrow
range of substrates and there-
fore new and more flexible ap-
proaches for the generation of
iminium ethers remain highly
desirable.

Our group has recently described the domino Claisen re-
arrangement of w-allyloxy, -propargyloxy and -benzyloxy
amides through the corresponding keteniminium salts for
the synthesis of a-substituted lactones in the presence of
triflic anhydride (Tf2O) and 2,4,6-collidine.[6] During recent
investigations, we were surprised to observe that iminium
ether 2 a could be isolated from this reaction in pure form
by omitting the final hydro ACHTUNGTRENNUNGlysis step (Scheme 2). Mechanisti-
cally, the formation of 2 a can be explained by an intramo-
lecular cyclization onto the transient keteniminium salt fol-
lowed by a [3,3] Claisen rearrangement. After purification
and counter-ion exchange we were able to unambiguously

confirm the structure of iminium ether 2 a by X-ray crystal-
lography.

Encouraged by the isolation of 2 a, we sought to develop
this reaction as a novel method for the generation of a-allyl
iminium ethers and to exploit their unique reactivity to facil-
itate the conversion of linear amides such as 1 a into
branched, highly functionalized products in a single opera-
tion (Scheme 3).

In line with the ambident electrophilicity of iminium
ethers, we envisaged that “hard” (non-stabilized) nucleo-
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Scheme 1. Traditional strategies for the preparation of iminium ethers.

Scheme 2. Formation of the iminium ether 2a by the Claisen rearrangement of amide 1 a.

Scheme 3. The generation and reaction of iminium ethers to afford a-al-
lylated products.
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philes would react with the central sp2 oxazacarbenium
atom C1 under ionic control (Nu1, Scheme 3 a), whereas
“softer” or more hindered nucleophiles might react at C4,
accompanied by ring opening and cleavage of the O�C4
bond (Nu2, Scheme 3 b). Herein, we report the development
of a one-pot procedure for the generation of iminium ethers
via the Claisen rearrangement of amides and their subse-
quent reaction with a diverse range of nucleophiles.

Amides 1 a, 1 b, and 1 c were subjected to the Claisen rear-
rangement by using conditions previously reported by our
group.[6] In a one-pot procedure, the crude iminium ether
was then reacted in situ with the appropriate nucleophilic
reagent (Table 1).

This sequence could be used for the preparation of a
broad range of products, including a-allyl lactones 3, b-
allyl-a,w-amino alcohols 4, and a-allyl amide derivatives 5–
10. Both classes of nucleophiles (Nu1 and Nu2, Scheme 3) re-
acted with linear amides 1 a and 1 b, whereas the branched
substrate 1 c could only be successfully united with the first
class of nucleophiles (Nu1, H2O, and NaBH4), presumably
due to the added steric hindrance at C4.

The reduction product 4 c was generated with a diastereo-ACHTUNGTRENNUNGisomeric ratio (d.r.) of >9:1, whereas the corresponding lac-
tone 3 c was formed with a slighlty lower d.r. of 5:1. It is
likely that the mildly basic hydrolytic conditions used to pre-
pare 3 c facilitate epimerization of the intermediate iminium
ether.

Notably, different reactions required some modification of
conditions, with solvent effects proving to be particularly im-
portant. Acetonitrile was usually superior for reactions the
involving six-membered iminium ether 2 b, which we ascribe
to the improved rate of nucleophilic substitution (versus
degradation) of intermediate 2 b in a polar aprotic solvent.
Similarly, the yields of reactions involving the five-mem-
bered iminium ether 2 a were usually higher than those in-
volving 2 b. This is likely due to the fact that the latter six-
membered species proved less stable than its homologue
under most conditions.

By an appropriate choice of nucleophile, this sequence
can be used to generate new C�S (using NaSPh), C�N
(NaN3, aliphatic amines) and even C�C bonds (NaCN).
NaN3 proved to be a particularly effective nucleophile; its
reactions proceeded at room temperature whereas all other
nucleophiles targeting the C4 position (Nu2, Scheme 3) re-
quired microwave irradiation. We observed that increasing
the amount of NaN3 employed from 1.1 to 2.0 equivalents
generally led to the formation of deallylated products, possi-
bly via SN2’ nucleophilic attack by the azide anion on the
allyl chain of the iminium ether. Reactions involving triphe-
nylphosphine (Table 1, entry 4) are also noteworthy, as this
nucleophile has not been previously reported to react with
iminium ethers. The products if these reactions are particu-
larly interesting as they provide structurally elaborate pre-
cursors ripe for subsequent Wittig reactions.

We then proceeded to examine the reaction of diastereo-
meric iminium ether 2 d with the same series of nucleophiles
(Scheme 4). Our previous studies[6] showed that lactone 3 d

Table 1. Iminium ether generation and subsequent nucleophilic capture
to form amides 3–10.

Entry Nu (conditions) Product, yield [%] (d.r.)

1
H2O (aq. NaHCO3, RT,
16 h)

3a, 90[a]

3b, 57[a]

3c, 71 (5:1)[a]

2 NaBH4 (MeOH, RT, 16 h)

4a, 72[b]

4b, 41[b]

4c, 73
(>9:1)[b]

3 NaCN (120 8C, mW, 5 min)

5a, 62[c]

5b, 82[d]

4 PPh3 (120 8C, mW, 1 h)

6a, 58[e]

6b, 40[d]

5 NaSPh (120 8C, mW, 5 min)

7a, 72[c]

7b, 85[d]

6 NaN3 (RT, 24 h)

8a, 56[c]

8b, 42[d]

7 9a, 73[e]

(120 8C, mW, 5 min) 9b, 47[d]

8 10a, 47[e]

(120 8C, mW, 5 min) 10b, 46[d]

[a] i) CH2Cl2, ii) biphasic mixture of CH2Cl2/aq. NaHCO3 (1:1).
[b] i) CH2Cl2, ii) MeOH. [c] i) CH2Cl2, ii) DMF. [d] i) and ii) MeCN. [e] i)
and ii) CH2Cl2.

Chem. Eur. J. 2012, 18, 16292 – 16296 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org 16293

COMMUNICATION

www.chemeurj.org


was generated with a diastereomeric ratio of 9:1 following
hydrolysis of 2 d with bicarbonate solution. Although switch-
ing to nucleophiles other than water generally provided a
lower degree of diastereomeric enrichment, the d.r. re-
mained relatively high in the case of poorly basic nucleo-
philes such as triphenylphosphine (5:1) and sodium borohy-
dride (7:1). However, nucleophiles necessitating longer reac-
tion times or more basic nucleophiles such as piperidine
generally led to reduction of the d.r., likely due to epimeri-
zation of the intermediate iminium ether.

A further substrate class that we examined incorporates a
phenyl ring within the alkyl
tether, thereby restricting con-
formational freedom in the
substrate. Interestingly, the O-
allyl amide 1 e was quantita-
tively converted to iminium
ether 2 e after just five minutes
at room temperature
(Scheme 5); these conditions
are remarkably mild given that
the same transformation for
iminium ethers 2 a–d generally
requires microwave irradiation
at 120 8C in order to proceed.
The facility with which this re-
action takes place is likely a
result of reduced conforma-
tional flexibility, resulting in
significant pre-organization for
the cyclization/Claisen rear-
rangement events, perhaps
combined with the favorable
formation of a conjugated ke-
teniminium salt intermediate.
Nucleophilic capture of 2 e was
also possible (Scheme 5),
giving rise to isochromanone
3 e or the aromatic aminoalco-
hol 4 e.

The O-benzyl analogue 1 f
was found to react under simi-
larly mild conditions. However,
the major product of this trans-
formation was not the expect-
ed iminium ether 2 f or its rear-
omatized congener;[7e] instead,
the isomeric compound 11 was
generated in 65 % yield
(Scheme 5). Although 11
proved inert to hydrolysis and
did not afford the expected
lactone product, it was possible
to confirm its structural assign-
ment by X-ray crystallography.

The formation of 11 can be
explained by initial generation

of iminium ether 2 f through the expected benzyl-Claisen re-
arrangement, followed by a Cope-type sigmatropic rear-
rangement.[8] Remarkably, this reaction sacrifices aromatici-
ty in one of the two phenyl rings, while simultaneously gen-
erating a sterically-crowded quaternary carbon center, and
proceeds under mild conditions at room temperature.

We also envisaged that iminium ethers generated by the
Claisen rearrangement might behave as competent pro-nu-
cleophiles through deprotonation at C2, thereby generating
an N,O-ketene aminal.[9] After some experimentation, we
found that it is possible to deprotonate the in situ formed

Scheme 4. Reactions of the diastereo-enriched iminium ether 2d.

Scheme 5. Claisen–Cope rearrangement of 1 f to produce iminium ether 11. An ORTEP drawing of 11·OTf is
shown, ellipsoids are presented at the 50 % probability level.
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2 a and combine it with benzyl bromide to afford the alkylat-
ed intermediate 2 g, which, following hydrolysis, leads to the
corresponding lactone 3 g (Scheme 6). This transformation
represents a sequential addition of both an electrophile
(BnBr) and a nucleophile (H2O) to the iminium ether 2 a
that was generated initially. It was also possible to react the
putative, newly formed iminium ether 2 g with nucleophiles
other than water, as evidenced by the preparation of nitrile
5 g. Remarkably, product 5 g is formed as a result of three
distinct C�C bond-forming events (Claisen rearrangement,

benzylation, and cyanation) in one pot with a very reasona-
ble overall yield of 46 %. These transformations provide ex-
pedient access to all-carbon quaternary centers with four
different functional groups from a simple linear precursor.

In summary, we have developed a new method for the
preparation of a-allylated iminium ethers by the electrophil-
ic Claisen rearrangement of amides. The generated iminium
ethers can be reacted in situ with a diverse range of nucleo-
philes to afford branched, highly-functionalized compounds
through the concomitant transfer of the O-allyl chain and
formation of a new C�S, C�N, C�P, or C�C bond in a single
operation. The investigation of conformationally restricted
substrates incorporating an aromatic ring (1 e and 1 f) re-
vealed that this modification greatly facilitates the formation
of the iminium ether, even leading to intriguing products of
dearomatization. We have also demonstrated that the imini-
um ethers may be utilized in a deprotonation–alkylation se-
quence followed by reaction with nucleophiles, thereby car-
rying out three complexity-generating reactions in a single,
one-pot operation. The ability to use amide electrophilic ac-
tivation to generate reactive intermediates that are amena-
ble to complexity-increasing cascades of bond-forming
events is an exciting line of research, which is currently
being further pursued in our laboratories.
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