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Abstract – A simple and efficient biomimetic synthesis of Antrodia maleimides 

and maleic anhydrides, including the HCV protease inhibitor antrodin A, is 

described. The key step is a Perkin-type condensation performed under 

exceptionally mild conditions.

The development of practical methods for constructing 3,4-disubstituted maleic anhydrides and 

maleimides continues to attract a great deal of attention due to the important biological properties of 

many such compouds.1 In 2004, Hattori and co-workers reported the isolation of a small family of closely 

related natural products, exemplified by antrodins A-C (1-3),2 from the treasured Taiwanese medicinal 

fungus Antrodia camphorata (a.k.a. Antrodia cinnamomea).3 Subsequently, in 2008 and 2013, additional 

members of the antrodin family were reported (e.g. 4-7, Figure 1).4-6 Despite their simple structures, the 

antrodins display a range of highly sought biological activities. Anhydride 1 is a non-cytotoxic, potent 

and selective inhibitor of hepatitis C virus (HCV) protease (IC50 = 0.9 µg/mL).7 In contrast, maleimide 2 

is devoid of HCV-protease inhibitory activity7 but suppresses the growth of estrogen-independent, highly 

metastatic MDA-MB-231 breast cancer cells in nude mice at a dose as low as 3 mg/kg (x3/week, i.p.).8 

Furthermore, newer members of this family, including 5-7, have been shown to inhibit the production of 

pro-inflammatory mediators such as IL-64a and NO.5,6  

So far, antrodins 1-3 have been synthesized by four groups including our own.9-12 The shortest available 

route10 requires a total of six steps to assemble anhydride 1 from which the maleimides 2-3 are derived.9-12  
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Figure 1. Representative members of the antrodin family 

 

On the other hand, !"hydroxybutenolide 6 has only been prepared once12 through oxyfunctionalization13 

of the corresponding butenolide. Our quest for a shorter route to 1-7 led us to consider the biosynthesis of 

these compounds,14 thought to arise via Perkin-type condensation of #"ketoisocaproic acid (KIC) with 8 

(Scheme 1). Interestingly, the only mention of 8 in the literature pertains to its isolation from a fungus,15 

which somewhat increases the likelihood of being a biosynthetic precursor of 1. We now report that this 

biomimetic pathway is not only realizable but provides a remarkably short and efficient synthesis of 1-3 

and their congeners. 
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Scheme 1. Proposed biosynthesis of 1 and 6 

 

Gram-quantities of the requisite homovalencic acid 8 were easily obtained from commercial phenol 9 by 

prenylation12 and subsequent ester hydrolysis (Scheme 2).16 In a seminal study of the Perkin condensation, 

Fields and co-workers have shown that this process works well for preparing 3,4-diarylmaleic anhydrides 

but rather poorly when one of the aryl groups is replaced by an alkyl.17 Furthermore, a literature survey 

revealed that all documented applications of the Fields method pertain to the synthesis of 

diaryl-substituted maleic anhydrides.18 Unsurprisingly, initial attempts at condensing 8 with commercial 

#"ketoisocaproic acid (or its potassium salt) using the Fields conditions (Ac2O, 140 °C) led only to traces 

of 1 (<10%). To our delight, however, a systematic investigation of various reaction parameters enabled 

an optimal procedure to be found, which consists in the use of triethylamine and acetic anhydride (5 equiv. 
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each) and the free !"keto acid in THF at room temperature. Under these mild conditions, antrodin A (1) 

was obtained in a respectable yield of 79% after flash chromatography.19 Since the conversion of 1 to 

antrodins B-C (2-3) has been reported,11,12 our route also delivers the latter in step-economical fashion. 

The usefulness of this chemistry is further demonstrated by the first synthesis of the anti-inflammatory 

norprenyl antrodin 5 and an exceptionally short formal synthesis9 of antrodin 4 (Scheme 2). Thus, 

commercial p-methoxyphenylacetic acid (10) was transformed in a single step (72%) to anhydride 11, 

which had previously been prepared by a 7-step route from citraconic anhydride (15.4% overall).9 

Conversion of 11 to maleimide 1220 followed by demethylation afforded antrodin 5 (mp 202-205 °C, lit.4a 

199-201 °C) whose NMR data were in good agreement with those reported for the natural product.4  
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Scheme 2. Short synthesis of antrodins 1-5 from commercial chemicals 

 

With easy access to anhydride 1, its reduction to antrocinnamomin D (6) was also explored (Eq. 1). The 

contrasting steric and electronic effects operating on either of the two carbonyl groups of 1 suggested that 

the task of attaining good regioselectivity would be challenging.21 After screening several metal hydrides,  
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including NaBH4, LiAlH(t-BuO)3, and K, N and L-selectride, it was found that the three selectrides gave 

some selectivity in favor of 6, with the best ratio (ca. 4:1) obtained using the L-version (Eq. 1). 

Nonetheless, the difficulties encountered in separating the two isomers from each other and the modest 

yields of the so obtained 6/13 mixtures (35-50%) led us to abandon this approach, especially when 

considering the availability of a highly efficient, regiospecific method for constructing 6 and related 

#"hydroxybutenolides.12,13 

In conclusion, we have described a remarkably short, biomimetic synthesis of the potent HCV protease 

inhibitor antrodin A (3 steps, 73% overall), which represents a significant improvement over the previous 

synthetic routes.9-12 The approach is modular, amenable to scale-up and demonstrates the serviceability of 

Perkin condensation for assembling 3-alkyl-4-aryl substituted maleic anhydrides. 
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