Reactions of Carbonyl Ylides

J. W. LOWN AND K. MATSUMOTO¹ Department of Chemistry, University of Alberta, Edmonton 7, Alberta Received June 22, 1971

2,3-Diphenylindenone oxide 1 undergoes thermal 1,3-dipolar cycloadditions via a carbonyl ylide with symmetrical olefinic dipolarophiles to give (*i*) with *cis* addends mixtures of *endo* and *exo* adducts in which *endo* adducts generally predominate in agreement with results obtained with 1-cyclohexyl-6-(cyclohexylimino)-1*a*-phenylindano[1,2-*b*]aziridine and (*ii*) with *trans* addends adducts in which the 2-*exo*-3-*endo* product predominates. The pyrilium oxide 4 is efficiently trapped with benzyne. 1,3-Diphen-ylisobenzofuran reacts with *cis*-addends to give *endo*-*exo* mixtures in which the *endo* adducts generally predominate. 2-Acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazoline undergoes regiospecific cycloaddition via a carbonyl ylide with unsymmetrical olefinic dipolarophiles in accordance with substituent electronic effects, and with 1,4-naphthoquinone a previously postulated type of intermediate adduct is isolated.

L'oxyde de diphénylindenone-2,3 1 peut réagir pour donner des cycloadditions dipolaires-1,3 thermiques, par l'intermédiaire d'une ylure de carbonyle possédant des dipolarophiles oléfiniques symétriques. On obtient ainsi (*i*) avec des mélanges *endo* et *exo* des produits *cis*, des produits d'addition où la forme *endo* prédomine habituellement, en accord avec les résultats obtenus avec le cyclohexyl-1 (cyclohexylimino)-6 phénylindano-1*a* aziridine[1,2-*b*] et (*ii*) avec les produits *trans*, des produits d'addition où la forme *exo-2-endo-3* prédomine. L'oxyde de pyrilium 4 peut être recueilli efficacement dans le benzène. Le diphénylisobenzofuranne réagit avec les produits *cis* pour donner des mélanges *endo-exo*, où les produits d'addition *endo* prédominent généralement. Le 2-acétyl-5,5 pentamethylène-2 phényl- Λ^3 -1,3,4-oxadiazoline peut réagir pour donner des cycloadditions régiospécifiques, via une ylure de carbonyle possédant des dipolarophiles oléfiniques non-symétriques, selon les effets électroniques du substituant; avec la naphthoquinone-1,4, on isole un produit d'addition intermédiaire postulé précédemment.

Canadian Journal of Chemistry, 49, 3443 (1971)

Introduction

Examination of the orbital symmetry controlled generation of azomethine ylides from aziridines and exploration of their synthetic potential via 1,3-dipolar cycloaddition to a wide variety of multiple and heteromultiple bonds has recently proved extremely fruitful (1-18). The isoelectronic carbonyl ylides which are of equal importance have not received as much attention (19–29). Strong evidence has been obtained for the predicted (30) thermal conrotatory (27) and the photochemical disrotatory (26, 27) opening of suitable oxirane precursors to carbonyl ylides. We report an examination of the cycloaddition reactions of certain carbonyl ylides with reference to their stereochemistry, regiospecificity (31), steric, and electronic requirements.

The model compounds chosen as carbonyl ylide precursors were 1, 2, and 3, affording an opportunity to examine these dipoles under as wide a range of reaction conditions as possible. The thermally induced tautomerization of 1 to 4 was reported by Ullmann and Milks (22) and

species **4** was shown to react as a carbonyl ylide in 1,3-dipolar cycloaddition to give, with nor-

bornadiene, an adduct which was assigned the *exo* structure **5**.

¹NRCC Postdoctorate Fellow, 1969 to present.

The isoelectronic 1-cyclohexyl-6(cyclohexylimino)-1*a*-phenylindano[1,2-b]aziridine (6) was recently shown by Lown and Matsumoto (32) to undergo valence tautomerization both thermally and photochemically to the isoquinolinium imine 7. The azomethine ylide species 7

was trapped efficiently by olefinic dipolarophiles to give exclusively *endo* adducts, *e.g.* 8. The

diametrically opposed configurational results obtained with 1 and 6 posed the questions of (i)whether this reflected a fundamental difference in properties of the apparently similar species of carbonyl ylides and azomethine ylides or whether (ii) other factors operating in 7 (e.g. steric hindrance from the N-substituent) accounted for the differences observed. However since identical results, *i.e.* exclusively endo adducts, are obtained with N—CH₃ analogs of 6 the problem required further investigation. Also in view of the controversy attending the mechanism of the Diels-Alder reaction it was of interest to determine if a trend towards general endo adduction also obtains in the related 1,3-dipolar cycloaddition reaction.

Results and Structural Assignments

Unlike the situation with 6, wherein specific deuterium labelling allowed an unambiguous assignment of configuration by examination of the n.m.r. coupling constants (33) a similar method could not be applied to the adducts of 1. Although diphenylisobenzofuran is normally regarded as a diene, contribution of resonance forms such as those shown below allow one to regard it as a

masked carbonyl ylide (28). Accordingly several 1,3-dipolar cycloaddition adducts were prepared in parallel from 1 and 2 for comparison and to aid in the n.m.r. assignments. The cycloaddition of dienophiles to 2 has been observed to give predominantly endo-adduction with pyracycloquinone and pyracyclene (33); exo-addition with cyclopropene (34), norbornadiene and norbornene (35), and predominantly exo-addition with chlorocyclopropene (36). In the latter case, which has been substantiated by Battiste and Sprouse (34), endo protons in the adducts were shielded by the benzene ring relative to the *exo* protons which is consistent with n.m.r. observations in other similar bicyclic adducts (37). The stereochemistry of the adducts of 2 have been assigned on this basis.

A number of other relationships became apparent upon examining the n.m.r. spectra of many adducts of 1 and 2.

(1) For adducts of **2**: (protons) δ *exo* > *endo*; and (methylester) δ *endo* > δ *exo*.

(2) For adducts of 1: (i) J cis (2-exo-3-exo) > J cis (2-endo-3-endo); (ii) J trans (2 endo-3-exo) > J trans (2 exo-3-endo); (iii) from protons, δ 3-exo > δ 3-endo; δ 2-exo > δ 2-endo; (iv) For trans adducts of 1, $\Delta(\delta$ 2-endo-3-exo) > $\Delta(\delta$ 2-exo-3endo) (see Table 3).

While these observations are empirical they serve as a check for internal consistency in the stereochemical assignment.

To obtain an accurate determination of isomeric proportion in the products, n.m.r. spectra were taken on the initially obtained mixtures before attempted purification.

Reaction of 2 separately with *cis*- and *trans*-1,2-dichloroethylene gave one adduct in each case, the product of the former being assigned the *endo* structure 9a. Similarly only one adduct 10a was obtained upon addition of *cis*-1,2-dichloroethylene with 1.

Addition of *trans*-1,2-dichloroethylene afforded an isomeric mixture of 10b and c in the ratio of 1:4 in which the 2-exo-3-endo product predominates. Comparison of the methine proton chemical shifts and coupling constants with those of 9a and b allows assignments to be made and shows no evidence of epimerization indicating

LOWN AND MATSUMOTO: CARBONYL YLIDES

a $R_1 = R_2 = Cl; R_3 = R_4 = H$ b $R_1 = R_4 = H; R_2 = R_3 = Cl$ c $R_1 = R_2 = 1,8$ -naphthyl; $R_3 = R_4 = H$ d $R_1 = R_2 = H; R_3, R_4 = 1,8$ -naphthyl e $R_1, R_2 = OCOO; R_3 = R_4 = H$ f $R_1 = R_2 = H; R_3, R_4 = OCOO$ g $R_1, R_2 = CONPhCO; R_3 = R_4 = H$ h $R_1 = R_4 = H; R_2 = R_3 = CO_2CH_3$ i $R_1 = R_4 = H; R_2 = R_3 = CO$ k $R_1 = R_4 = H; R_2 = R_3 = COPh$ k $R_1 = R_4 = H; R_2 = R_3 = COPh$ l $R_1 = CN; R_2 = CH_3; R_3 = R_4 = H$

 $a R_1 = R_2 = Cl; R_3 = R_4 = H$ $b R_1 = R_4 = H; R_2 = R_3 = Cl$ $c R_1 = R_4 = Cl; R_2 = R_3 = H$ $d R_1, R_2 = 1,8$ -naphthyl; $R_3 = R_4 = H$ $e R_1 = R_2 = H; R_3, R_4 = 1,8$ -naphthyl $f R_1, R_2 = OCOO; R_3 = R_4 = H$ $g R_1 = R_2 = H; R_3, R_4 = OCOO$ $h R_1, R_2 = COOCO; R_3 = R_4 = H$ $i R_1, R_2 = \text{CONPhCO}; R_3 = R_4 = H$ $j R_1 = R_4 = CO_2CH_3; R_2 = R_3 = H$ $k R_1 = R_4 = H; R_2 = R_3 = CO_2CH_3$ $l R_1 = R_2 = H; R_3 = R_4 = CO_2CH_3$ $m\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{CO}_2\mathbf{CH}_3; \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}$ $n R_1 = R_4 = Ph; R_2 = R_3 = H$ $o R_1 = R_4 = H; R_2 = R_3 = Ph$ $p R_1 = R_4 = CN; R_2 = R_3 = H$ $q R_1 = R_4 = H; R_2 = R_3 = CN$ $r R_1 = R_4 = COPh; R_2 = R_3 = H$ $s R_1 = R_2 = Ph; R_3 = R_4 = H$ $t R_1 = R_2 = H; R_3 = R_4 = Ph$ $u R_1 = CN; R_2 = CH_3; R_3 = R_4 = H$ $v R_1 = CN; R_2 = R_3 = R_4 = H$ $w R_1, R_2 = CONHCO, R_3 = R_4 = H$

stereospecific cycloadditions. The *cis*-configuration of 10a was confirmed by the facile *trans*-elimination of hydrogen chloride upon recrystallization to give 11 in which the direction of elimination is not determined. Compounds 10b and c in contrast were quite stable to heating and showed no tendency to eliminate hydrogen chloride.

Diphenylisobenzofuran 2 reacted with acenaphthylene to give an isomeric mixture of the endo and exo adducts 9c and d in the ratio of 3:1. Trost recently reported reaction of 2 with the closely analogous pyracycloquinone to give an endo:exo ratio of 3:1 (33). The exo methine protons in the latter case resonate at δ 5.42 closely comparable with the analogous protons in 9c at 5.12, supporting the structural assignments. The indenone oxide 1 afforded with acenaphthylene a mixture of the analogous adducts 10d and e in the endo:exo proportion of 3:2 suggesting 2 is a good analog of 1.

Vinylene carbonate adds to 2 to form adducts in which the ratio of the *endo* to *exo-cis* adducts 9e to f is 6:1. The indenone oxide similarly affords the *endo* and *exo* adducts 10f and g in a ratio of 3:1.

Exclusive formation of the endo adducts of 1 was observed with maleic anhydride 10h and with *N*-phenylmaleimide 10i.

In the addition of 1 to dimethyl maleate and dimethyl fumarate all four possible stereoisomeric adducts were observed allowing a closer comparison of chemical shifts, coupling constants, and the steric requirements of the cycloadditions. With dimethyl fumarate for example two isomeric adducts 10j and k were obtained in a ratio of 3:1 and assigned by comparison with the single adduct 9h of unambiguous structure obtained from 2. Similarly two isomeric adducts 10l and m in the proportion of 3.6:1 were obtained by reaction of 1 with dimethyl maleate.

The assignments of 10l and m were proven by mild acid hydrolysis of the *endo*-maleic anhydride adduct 10h to the *cis-endo*-diacid 12 (see Scheme 1). A single diacid was obtained indicating that epimerization had not occurred. Treatment of 12with diazomethane in ether gave 10m in quantitative yield. Direct reaction of diazomethane in ether on 10h also gave 10m in quantitative yield.

trans-Stilbene afforded two isomeric adducts **10**n and o in the ratio of 5:2. Similarly *trans*-1,2-dicyanoethylene gave rise to two isomeric adducts **10**p and q in the ratio of 7:1 in which assignments were made by comparison with the

adduct 9j obtained from 1. With very bulky groups like benzoyl on the addend one observes exclusive formation of the 2-*exo*-3-*endo* isomer as in 10r obtained from *trans*-dibenzoylethylene. *cis*-Stilbene gives rise to mixtures of *endo* and *exo* adducts 10s and t in the ratio of 2:3.

A result which parallels observations made with the indanoaziridine 6 (38) was that although commercial crotonitrile consists of a *cis-trans* mixture, reaction with both 1 and 2 gave exclusively *endo* adducts 10*u* and 9*l* respectively, corresponding only to addition of the *cis*-isomer in an *endo* direction. Comparison of the protonproton coupling with those in the ABC analysis of the methine protons in the adduct 10v obtained from acrylonitrile, confirm the *cis* assignments in 10u and 9l.

In the reaction of 1 with diphenylcyclopro-

LOWN AND MATSUMOTO: CARBONYL YLIDES

penone (see Scheme 2), cycloaddition of the carbonyl ylide takes place to the carbon-carbon double bond. Subsequent spontaneous loss of the carbon monoxide from the intermediate produces 13 which is also obtained directly with diphenylacetylene. The behavior of diphenylcy-clopropenone towards 2 is quite different and involves instead initial attack at the carbonyl bond to form 14 (39).

Species 4 can also be trapped with the reactive "acetylenic" dipolarophile benzyne, generated *in situ* from diphenyliodonium-2-carboxylate to give 15.

 Δ^3 -1,3-4-Oxadiazolines provide convenient precursors for acyclic carbonyl ylides. Recently prepared by Hoffman and Luthardt (24) they have been shown by these authors and by Rajagopalan and Advani (23) to cleave at moderate temperatures to carbonyl ylides which may be trapped by acetylenic dipolarophiles.

2-Acetyl-5,5-pentamethylene- Δ^3 -1,3,4-oxadiazoline (16) reacted with acrylonitrile regiospecifically to give a single product 17 (see Scheme 3). In common with the experience of other workers (23, 24) acetic acid was eliminated from the initial product of cycloaddition. The single orientation represented by 17 was proven by the absence of a vinylic absorption in the n.m.r. spectrum. The identical regiospecificity of addition was exhibited in the cycloaddition of 16 to methyl acrylate and to crotonitrile to give 18 and 19 respectively as the only products. The orientation of addition is obvious from the n.m.r. spectra, that of 18 shows a two proton singlet at δ 2.83, and that of **19** shows a methyl group doublet at δ 1.20. Identical products 20 are obtained from both dimethyl maleate and dimethyl fumarate, corresponding to the elimina-

tion of acetic acid. Fumaronitrile affords a single adduct 21 in good yield in which acetic acid has also been eliminated during the reaction. Diben-

zoylethylene reacted with **16** to give adduct **22**. The previously suggested intermediate (23) in the 1,3-dipolar cycloadditions of olefinic dipolarophiles to carbonyl ylides of this type was isolated in the case of 1,4-naphthoquinone as adduct **23**.

Discussion

Numerous attempts have been made to account for the Alder *endo* addition rule (40) in the Diels– Alder reaction. Recently the rule has been reinterpreted in quantum mechanical terms by Hoffmann and Woodward who note that the *endo* transition state is stabilized relative to the

exo transition state by symmetry controlled secondary orbital interaction (41). This view was supported by Herndon and Hall with extended Hückel calculations (42) but more recently these authors have concluded that such secondary orbital interactions may be relatively unimportant and that geometrical overlap relationships of the π -orbitals at only the primary bonding center need be considered (43). Other interpretations have been made in terms of inductive forces (44), charge-transfer interactions (45), and dipole–dipole interactions (46).

While the related $(4 + 2)\pi$ 1,3-dipolar cycloaddition reaction might be expected to involve similar secondary effects leading to preferential *endo* addition, no systematic study has been undertaken. Woller and Cromwell have reported one example of cycloaddition to an aziridine, the direction of which appears to be dictated by maximum overlap of the π -orbitals of the two components (47).

Orientation phenomena in 1,3-dipolar cycloadditions reactions have been interpreted as an interplay of steric and electronic factors (48). Examination of the stereochemistry of addition of symmetrical dipolarophiles to the indenone oxide should minimize electronic factors. The stereospecificity observed in such additions noted above is in agreement with recent conclusions derived from intramolecular isotope effects on the concerted nature of 1,3-dipolar cycloadditions of tetracyanoethylene oxide to allenes (25). Two tendencies are apparent from the above results. First a general preference under these conditions for endo additions of cis-addends to 1 and 2 but exceptions are noted in the case of dimethyl maleate and cis-stilbene. This is in agreement with other reported examples in the case of 2 (33). Arnold and Karnischky have recently shown that the carbonyl ylide derived from the thermal cleavage of 5-oxabicyclo [2,1,0]pentane forms a mixture of exo and endo adducts with maleonitrile (27). The endo preference for 1 is in agreement with the results obtained with the indanoaziridine 6 (32, 38) and removes the apparent discrepancy between the hitherto observed orientation of additions to 1 and 6.

A second tendency is apparent during the cycloaddition of *trans*-addends to 1 for the two substituents to adopt 2-*exo*-3-*endo* positions. Although the adducts obtained from 1 appear to be configurationally stable under their conditions

of preparation, however, until it is demonstrated that the product distribution in these reactions is kinetically controlled (in view of the high temperatures that must be used), any attempts to formulate a general *endo* rule for such 1,3-dipolar cycloadditions is premature.

Electronic effects might be expected to play a significant role in determining the regiospecificity of addition of unsymmetrical dipolarophiles to 1 and 2. Ullmann and Milks have reported in the addition of unsymmetrical addends to 1 a regiospecificity to place the substituents remote from the 1-phenyl group (22) *e.g.* 28, 29, 30.

While steric hindrance factors will contribute here the orientation of all three additions is consonant with electronic directional effects.

Electronic factors may similarly be predominant in producing the regiospecificity observed in the additions to the acyclic ylide derived from 3 i.e.., in 17, 18, and 19 all of which correspond to the structures expected on the basis of electronic effects.

Experimental

The m.p.'s. were determined with a Fisher-Johns apparatus. The i.r. spectra were recorded with a Perkin-Elmer model 421 spectrophotometer. The n.m.r. spectra were recorded with Varian A-60 and A-100 spectrometers for *ca*. 5-10% (w/v) solutions and were taken on the initially obtained reaction mixtures to obtain an accurate determination of isomeric ratios; line positions are reported in p.p.m. from tetramethylsilane. Mass spectra were determined with an A.E.I. MS12 double-focusing high-resolution mass spectrometer (ionization energy usually 70 eV). Peak measurements were made by comparison with perfluorotributylamine at a resolving power of 15 000. In those cases where mixtures of isomers were obtained, peak measurements were determined on the analytical samples and no attempts were made to separate the isomers. Kieselgel DF-5 (Camag, Switzerland) and Eastman Kodak precoated silica sheets were used for t.l.c. Microanalyses were carried out by Mrs. D. Mahlow of this department.

Preparation of Substrates

2,3-Diphenylindenone oxide and 1,3-diphenylisobenzofuran were prepared by the methods of Weitz and Scheffer (49) and of Newman (50) respectively.

General Procedure for 1,3-Dipolar Cycloadditions

The following experiments are representative of the reaction conditions employed throughout, thereafter the results are summarized in tabular form.

Reaction of 2,3-Diphenylindenone Oxide with

Dimethvl Fumarate

A solution of 0.893 g (3 mmol) of 2,3-diphenylindenone oxide and 0.432 g (3 mmol) of dimethyl fumarate in 30 ml of dry toluene was heated to 135° in a sealed tube for 12 h under nitrogen. Evaporation of the solvent *in vacuo* and trituration of the residue with 95% ethanol afforded a mixture of adducts 10k and *j* in a ratio of (1:3) as shown by the n.m.r. spectrum, 1.22 g (92% yield), m.p. 188–189° as colorless crystals (from 95% ethanol).

Anal. Calcd. for $C_{27}H_{22}O_6$ (mol. wt. 442.1416): C, 73.3; H, 5.0. Found (442.1410 (mass spectrum)): C, 73.25; H, 5.0.

The i.r., spectrum v_{max} (CHCl₃) 1734, 1705 cm⁻¹ (C=O). The n.m.r. spectrum δ_{TMS} (CDCl₃) 3.20; 3.39 (4.5H, s, CO₂CH₃ (10*j*)); 3.32, 3.59 (1.5H, s, CO₂CH₃ (10*k*)); 4.03, 4.19 (0.5H, ABq, J = 4 Hz (10*k*) methines); 4.04, 4.57 (1.50H, ABq, J = 5.5 Hz (10*j*) methines); 6.8-8.3 (14H, m, aromatic protons).

Reaction of 2,3-Diphenylindenone Oxide with

Dimethyl Maleate

A solution of 0.596 g (2 mmol) of 2,3-diphenylindenone oxide and 0.576 g (4 mmol) of dimethyl maleate in 25 ml of dry toluene was heated at 135° for 48 h in a sealed tube under nitrogen. Evaporation of the solvent *in vacuo* and trituration of the residue with 50% ethanol afforded a mixture of adducts **10***l* and *m* in the ratio of (3.6:1) as shown by the n.m.r. spectrum 0.82 g (94% yield), m.p. $155-158^{\circ}$ as colorless crystals (from 50% aqueous ethanol).

Anal. Calcd. for $C_{27}H_{22}O_6$: (mol. wt. 442.1416): C, 73.3; H, 5.0. Found (442.1409 (mass spectrum)): C, 73.2; H, 4.9.

The i.r. spectrum v_{max} (CHCl₃) 1745, 1714 cm⁻¹ (C=O). The n.m.r. spectrum δ_{TMS} (CDCl₃) 3.27, 3.40 (4.68 H, s, CO₂CH₃(10*l*)); 3.50, 3.59 (1.29H, s, CO₂CH₃(10*m*)); 3.84, 3.96 (1.56H, ABq, J = 9 Hz, (10*l*) methines); 4.13, 4.31 (0.43H, ABq, J = 11.5 Hz (10*m*) methines); 6.8-8.3 (14H, m, aromatic protons).

Reaction of 2,3-Diphenylindenone Oxide with

cis-Dichloroethylene

A solution of 0.596 g (2 mmol) of 2,3-diphenylindenone oxide and 15 ml of *cis*-1,2-dichloroethylene in 15 ml of dry toluene was heated to 135° for 12 h under nitrogen. Evaporation of the solvent and excess of dichloroethylene *in vacuo* and trituration of the residue with 95% ethanol afforded **10***a* 0.566 g (72% yield), m.p. 129–131° as color-

less crystals; δ (CDCl₃) 4.88, 5.05 (2H, ABq, J = 9 Hz, methines). Recrystallization of 10*q* from 95% ethanol or chromatography on alumina afforded the dehydrochlorinated product 11, m.p. 130–131°, as a pale yellow crystalline solid (from 95% ethanol) in quantitative yield.

Anal. Calcd. for $C_{23}H_{15}O_2^{35}Cl$ (mol. wt. 359.0842): C, 77.0; H, 4.2; Cl, 9.8. Found (359.0842 (mass spectrum)): C, 77.4; H, 4.4; Cl, 9.3.

The i.r. spectrum v_{max} (CHCl₃) 1710 cm⁻¹ (C=O). Reaction of 1,3-Diphenylisobenzofuran with cis-1,2-

Dichloroethylene

A solution of 1.08 g (4 mmol) of 1,3-diphenylisobenzofuran and 15 ml of *cis*-1,2-dichloroethylene in 15 ml of dry benzene was heated under reflux at 100° for 12 h. Evaporation of the solvent and excess of dichloroethylene *in vacuo* and trituration of the residue with 95% ethanol afforded 9a 1.06 g (73% yield), m.p. 138-140°, as colorless crystals (from ether - 95% ethanol). Anal. Calcd. for $C_{22}H_{16}O^{35}Cl_2$ (mol. wt. 366.0579):

Anal. Calcd. for $C_{22}H_{16}O^{35}Cl_2$ (mol. wt. 366.0579): C, 71.95; H, 4.4; Cl, 19.3. Found (366.0570 (mass spectrum)): C, 71.8; H, 4.4; Cl, 19.3.

The n.m.r. spectrum δ_{TMS} (CDCl₃) 4.90 (2H, s, methines); 7.0–8.1 (14H, m, aromatic protons).

Reaction of 2,3-Diphenylindenone Oxide with

Diphenyliodonium-2-carboxylate

A mixture of 0.894 g (3 mmol) of 2,3-diphenylindenone oxide and 2.0 g (6 mmol) of diphenyliodonium-2-carboxylate (51) in 40 ml of *sym*-trimethylbenzene was rapidly raised to reflux temperature and then heated under reflux with stirring for 3 h at which time no remaining 2,3-diphenylindenone oxide could be detected by t.l.c. Evaporation of the filtered solution to remove excess of solvents *in vacuo* gave a yellow oil which was subjected to chromatography on 100 g of alumina. Elution with *n*-pentane removed aromatic by-products, while the main fraction was obtained by elution with benzene, the main portion of which was a pale yellow oil which crystallized from 95% ethanol to give **15**, 0.869 g (80% yield), as a pale yellow solid, m.p. 78-80° (from 95% ethanol).

Anal. Calcd. for $C_{27}H_8O_2$ (mol. wt. 374.1306): C, 86.6; H, 4.85. Found (374.1300 (mass spectrum)): C, 86.7; H, 4.9.

The i.r. spectrum v_{max} (CHCl₃) 1704 cm⁻¹ (C=O). The n.m.r. spectrum δ_{TMS} (CDCl₃) 6.6–8.2 (m, aromatic protons).

Relation of the Configuration of the Adducts of

2,3-Diphenylindenone Oxide with (a) Maleic

Anhydride 10h and (b) Dimethyl Maleate 10m

(A) A mixture of 0.04 g (1 mmol) of adduct 10h and a 2% solution of hydrochloric acid in 15 ml of 25% aqueous dioxane was heated under reflux gently for 2 h. After cooling the solid which had precipitated was collected representing the diacid 12, 0.341 g (82% yield), m.p. 150°, which was shown by t.l.c. and n.m.r. to consist of only one isomer.

A solution of 0.2 g (0.5 mmol) of 12 in 20 ml of methanol was treated with a solution of diazomethane prepared from 0.82 g (4 mmol) of *p*-toluenesulfonyl-methylnitrosamide (Diazald) and the mixture stirred for 12 h. Removal of the solvents *in vacuo* and recrystallization of the residual solid from aqueous methanol afforded the diester 10*m*, 0.21 g (95% yield), m.p. 160–161°. The

					Melting	ş	_		Calcula	ated (%)			Fou	nd (%)		Mass spectra	
10	R ₁	R_2	R ₃	R4	point (°C)	Yield (%)	Isomer ratio*	С	н	N	Cl	с	н	N	Cl	Calculated	Found
b	н	Cl	Cl	н)												204 0529
;	CI	н	н	Cl	} 132	69	17:83	69.8	4.1	_	17.9	69.6	4.2		17.6	394.0528(C ₂₃ H ₁₆ O ₂ ³⁵ Cl ₂)	394.0528
ł	-[1,8-napht	hyl]-	н	н]		~ •										450 1610
	н	н	-[1,8-na	aphthyl]-	} 219	93	62:37	88.0	4.9	—	_	87.3	4.8	_		450.1619(C ₃₃ H ₂₂ O ₂)	430.1610
	-0000-		н	н)												284 0000
	н	н	00		} 218	87	75:25	75.0	4.1	_	_	74.97	4.19	_	_	384.0998(C ₂₄ H ₁₆ O ₅)	384.0990
!		co —	н	н	227	89	100:0	75.8	4.1	—		75.75	4.2	-	_	396.0998(C ₂₅ H ₁₆ O ₅)	396.0990
	-CONP	hCO—	н	н	261	93	100:0	78.1	4.5	3.00		78.1	4.5	2.7	—	471.1471(C ₃₁ H ₂₁ O ₄ N)	471.1465
	$\rm CO_2 CH_3$	н	н	$\rm CO_2 CH_3$	100	02	75.75	72 2	5.0			73 25	5.0			442 1416(CHO.)	442 1410
	н	$\rm CO_2 CH_3$	$\rm CO_2 CH_3$	н	5 100	92	13.43	15.5	5.0			13.23	5.0	—	_	442.1410(027112206)	442.1410
	н	н	$\rm CO_2 CH_3$	$\rm CO_2 CH_3$	157	94	22.79	72 2	5.0			72.2	4.0			442 1416(C H.O)	442 1409
1	CO ₃ CH ₃	$\rm CO_2 CH_3$	н	н	§ 157	94	22.10	15.5	5.0	_		13.2	4.9	_	_	442.1410(C27112206)	442.1409
	Ph	н	н	Ph	102	02	70.20	07 0				00 A				479 1022(C H N O)	478 1020
	н	Ph	Ph	н	<u>الالام</u>	95	70:30	07.0	5.5	-		00.0	5.5		_	478.1999(C35H26N2O2)	478.1950
	CN	н	н	CN	202	05	97.12			7.0				7 2		276 1212(C H N O)	376 1207
	н	CN	CN	н	£ 203	85	87:15		_	7.0		_		7.5	_	$570.1213(C_{25}H_{16}H_2O_2)$	570.1207
	COPh	н	н	COPh	216	88	100:0	83.1	4.9	—		82.8	4.9		_	534.1831(C ₃₇ H ₂₆ O ₄)	534.1824
	Ph	Ph	н	н	68	72	10.60	87 8	5 5		_	87 0	5 5			478 1933(C++H++O+)	478 1933
	н	Н	Ph	Ph)	12	-0.00	07.0	5.5	_	_	01.9	<i></i>		_	470.1705(035112602)	-10.1755
	CN	CH_3	н	н	191	80	100:0	82.2	5.2	3.8		82.4	5.3	4.00	—	365.1416(C ₂₅ H ₁₉ NO ₂)	365.1410
	CN	н	н	н	179	98	100:0	82.0	4.9	4.0	-	82.1	4.8	3.75	—	351.1259(C ₂₄ H ₁₇ NO ₂)	351.1255
v	-CONP	nCO—	н	н	275	93	100:0	75.9	4.3	3.5	-	75.4	4.3	3.3		395.1157(C ₂₅ H ₁₇ NO ₄)	395.1151

TADIE 1	1.3 Dipolar evaluaddition	adducts of 2.2 diphonulindepone	avide with alefinic d	linolarophiles
IADLE I.	1,5-Dipolar cycloaddillon	auducts of 2,5-diplicityindenone	oxide with olemne t	inpolar optimes

*Determined by integration of n.m.r. spectra.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by FORDHAM UNIVERSITY on 12/15/12 For personal use only.

SI
Υ.
A
Z
D
N.
H∧
Ð
0 P
Έ
b. V
no
S.C
ul u
цц
erse
se: pe
Foi
n
MA
<
5
M M
from w
ed from w
aded from w
nloaded from w
ownloaded from w
Downloaded from w
m. Downloaded from w
hem. Downloaded from w
. Chem. Downloaded from w
ı. J. Chem. Downloaded from w
Can. J. Chem. Downloaded from w
Can. J. Chem. Downloaded from w
Can. J. Chem. Downloaded from w

on 12/15/12

					Melting	3			Calculat		Found (%)				Mass Spectra		
9	R ₁	R ₂	R ₃	R4	(°C)	(%)	ratio*	С	н	N	Cl	c	н	N	Cl	Calculated	Found
a	Cl	Cl	н	н	138	73	100:0	71.95	4.4	_	19.3	71.8	4.4		19.3	366.0579(C ₂₂ H ₁₆ O ³⁵ Cl ₂)	366.0570
Ь	н	Cl	Cl	н	142	73		71.95	4.4		19.3	71.8	4.5		19.4	366.0579(C ₂₂ H ₁₆ O ³⁵ Cl ₂)	366.0576
с	-[1,8-dinap]	hthyl]-	н	н												(-12-102)	
d	н	н	-[1,8-dinaph	thyl]-	>† 178	83	75:25										
е	-0000		н	н	+	06		~~ -									
f	н	н	OCO0)	>‡ 218	86	85:15	77.5	4.5		_	77.8	4.5	-			
g	-CONPhCO-		н	н́	148	82	100:0	81.25	4.8	3.2		81.7	4.8	2.9		443.1521(C ₂₀ H ₂₁ NO ₃)	443,1515
h	н	CO ₂ CH ₃	CO_2CH_3	н	148	67		75.35	5.35	-		74.95	5.3	_	_	$414.1467(C_{26}H_{22}O_5)$	414,1472
i	CO ₂ CH ₃	CO ₂ CH ₃	н	н	114	76	100:0	75.35	5.35		_	75.35	5.35			414.1467(C ₂₆ H ₂₂ O ₅)	414, 1472
j -	H	CN	CN	н	190	84		82.7	4.6	8.0		83.0	4.5	7.9		348.1262(C24H16N2O)	348, 1254
k	н	COPh	COPh	H‡	145	86		85.35	5.2			85.4	5.35				
l	CN	CH3	н	н	140	67	100:0	85.4	5.7	4.2		85.2	5.7	4.1	_	337.1467(C ₂₄ H ₁₉ NO)	337.1455

TABLE 2. Adducts of 1,3-diphenylisobenzofuran

*Determined by integration of n.m.r. spectra. †Reference 52. ‡Molecular ion too small for accurate peak measurement.

LOWN AND MATSUMOTO: CARBONYL YLIDES

Compound		Chemical	shifts (δ)		Coupling constants (Hz)							
no.	R ₁	R ₂	R ₃	R ₄	J ₁₂	J ₁₄	J ₂₃	J ₃₄	J ₁₃			
10 <i>a</i>			5.05, d	4.88, d				9				
Ь	4.89, d			4.95, d		1.5						
C _		4.72, d	5.08, d	5 00 1			4.2	0 F				
a	1 75 d	1 55 4	5.28, d	5.08, d	75			8.5				
f	4.75, u	4.55, u	5 57 d	5 37 d	1.5			85				
y g	5.46. d	5.36 d	5.57, u	J.57, u	6.6			0.5				
ĥ			4.49. d	4.35. d	0.0			10				
i			4.38, d	4.23, d				10				
j	3.39*	4.04, d	4.57, d	3.20*			5.5					
ķ	.4.03, d	3.59*	3.32*	4.19, d	_	4						
1	3.96, d	3.84, d	3.27*	3.40*	9							
m	3.50*	3.39* 2.76 d	4.31, d	4.13, d			0 F	11.5				
<i>n</i>	3 94 d	5.70, u	4.10, u	4 07 d		6	8.5					
0 n	J.J . , u	3 93 d	4 18 d	4.07, u		0	65					
a a	4.07. d			4.07. d			0.5					
ŕ		4.75, d	5.65, d				7.5					
S			4.73, d	4.48, d				12.5				
t	4.48, d	4.16, d			8.8							
и		1.30†	4.04, d	3.2, d				11				
v Og			1 00 -	1 00 -		4		10	11.5			
9 <i>a</i> b	4 <u>12</u> d		4.90, s	4.90, s		25						
c	ч. 4 2, u	_	5 12 s	5 12 s		2.5						
d	4.35. d	4.35. d										
е			5.26, s	5.26, s								
f	5.13, s	5.13, s										
g			4.18, s	4.18, s								
h	3.59, d	3.49*	3.30*	4.31, d		4.5						
I,	3.49*	3.49*	4.13, d	4.13, d		4.5						
J k	5.49, a			5.82, a		4.5						
к 1	4. <i>32</i> , u	1 00+	372 d	3.11, u 3.0 d		2		10				
•		1.00	<i>J. 12</i> , U	5.0, u	·····			10				

TABLE 3. Methine and alkyl group chemical shifts and coupling constants for adducts of 2,3-diphenylindenone oxide(10) and diphenylisobenzofuran (9)

*CO₂CH₃. †CH₃.

ICH₃.

spectral properties of this material were identical with those of the minor component obtained by direct addition of 1 to dimethyl maleate.

(B) The identical product was obtained directly by reaction of 10h with a solution of diazomethane in ether in 87% yield.

By the above general procedures a series of adducts of 1 and 2 were prepared. Their analytical and spectral data are summarized in Tables 1–3.

Reaction of 2-Acetyl-5,5-pentamethylene-2-phenyl-

 Δ^3 -1,3,4-oxadiazoline with Acrylonitrile

A solution of 1.37 g (5 mmol) of 2-acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazoline and 10 ml of acrylonitrile in 20 ml of dry benzene was heated under gentle reflux for 6 h. Evaporation of the solvent and excess of acrylonitrile *in vacuo* gave a brown oil which was subjected to chromatography on 90 g of B.D.H. alumina. Elution with benzene first removed epoxide by-product while elution with chloroform gave 17 as a pale brown solid which was purified by recrystallization from petroleum ether (b.p. 40–60°) 0.628 g (53% yield), m.p. 107–110°.

Anal. Calcd. for C₁₆H₁₇NO (mol. wt. 239.1310): N, 5.85. Found 239.1310 (mass spectrum)): N, 5.9.

The i.r. spectrum v_{max} (CHCl₃) 2197 cm⁻¹ (CN). The n.m.r. spectrum δ_{TMS} (CDCl₃) 1.0–2.4 (10H, m, C₆H₁₁); 3.42 (2H, s, methylene); 7.1–8.2 (5H, m, aromatic hydrogens).

Reaction of 2-Acetyl-5,5-pentamethylene-2-phenyl-

 Δ^3 -1,3,4-oxadiazoline with Dimethyl Fumarate

A solution of 1.37 g (5 mmol) of 2-acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazoline and 0.729 g (5 mmol) of dimethyl fumarate in 30 ml of dry benzene was heated under gentle reflux for 4 h when the evolution of nitrogen ceased. Evaporation of the solvent *in vacuo* gave a yellow oil which was subjected to chromatography on 90 g of B.D.H. alumina. Elution successively with hexane, hexane/benzene (9:1), and hexane/benzene (4:1) removed a small amount of epoxide by-product. Elution with benzene gave the main fraction **20** as a colorless solid 1.63 g (73% yield), m.p. 70° (from ether-pentane).

Anal. Calcd. for $C_{19}H_{22}O_5$ (mol. wt. 330.1467): C, 69.1; H, 6.7. Found (330.1460 (mass spectrum)): C, 69.3; H, 6.6.

The i.r. spectrum v_{max} (CHCl₃) 1700 (br) (C=O). The n.m.r. spectrum δ_{TMS} (CDCl₃) 1.0–2.4 (10H, m, C₆H₁₁); 3.63, 3.72 (3H each, s, CO₂CH₃), 7.2–8.0 (5H, m, aromatic protons).

Compound				Melting	Viold	C	Calculate	d	Fo	ound (%))	Mass spectra		Nucle	ar magne spec	etic resonance tra
no.	R ₁	R ₂	R3	(°C)	(%)	С	н	N	С	н	N	Calculated	Found	R ₁	R ₂	R ₃ (δ) <i>J</i> (Hz)
17	CN	н	н	110	53	_		5.85		_	5.9	239.1310(C ₁₆ H ₁₇ NO)	239.1310			4.05
18	CO ₂ CH ₃	н	н	oil	65		-					294.1256(C19H18O3)	294.1252	3.69*	2.83	2.83
19	CN	CH ₃	н	oil	43	_						253.1467(C17H19NO)	253.1463		1.20, d	2.96,q 7
20	CO ₂ CH ₃	CO ₂ CH ₃	н	70	76	69.1	6.7		69.3	6.6		330.1467(C19H22O5)	330.1460	3.72*	3.63*	3.83
21	CN	CN	н	115	64	77.25	6.10	10.6	76.9	5.8	10.5	264.1263(C17H16N2O)	264.1262			3.94
22	PhCO	PhCO	н	68	83	74.24	5.98		74.06	6.06		422.1882(C29H26O3)	422.1876			5.13
24	-CON	HCO-	н	200	88	72.1	6.05	4.9	72.05	5.9	5.0	283.1208(C17H17NO3)	283.1210			4.05

TABLE 4.	1,3-Dipolar cycloadditon products of 2-acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazoline with olefinic dipolarophiles

*CO₂CH₃.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by FORDHAM UNIVERSITY on 12/15/12 For personal use only.

An identical product was obtained by reaction of 2-acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazo-line with dimethyl maleate.

- Reaction of 2-Acetyl-5,5-pentamethylene-2-phenyl-
- Δ^3 -1,3,4-oxadiazoline with 1,4-Naphthaquinone

A solution of 1.10 g (4 mmol) of 2-acetyl-5,5-pentamethylene-2-phenyl- Δ^3 -1,3,4-oxadiazoline and 0.63 g (4 mmol) of 1,4-naphthaquinone in 40 ml of dry benzene was heated under reflux for 5 h when a dark red solution was obtained. Evaporation of the solvent *in vacuo* gave a dark red oil which was subjected to chromatography on 90 g of B.D.H. alumina. Elution successively with 200 ml of hexane and 300 ml of (3:2) hexane/benzene removed some epoxide by-product and unreacted 1,4naphthaquinone, while elution with 200 ml of benzene afforded the main fraction. Evaporation of the solvent gave a yellow-green oil, trituration of which with 95% ethanol gave 23 as a pale-green solid 0.63 g (40% yield), m.p. 169–171° (from 95% ethanol).

Anal. Calcd. for $C_{25}H_{24}O_5$ (mol. wt. 404.1624): C 82.4; H, 6.2. Found (404.1616 (mass spectrum)): C 82.05; H, 6.5.

The i.r. spectrum v_{max} (CHCl₃) 1672, 1753 cm⁻¹ (C=O). The n.m.r. spectrum δ_{TMS} (CDCl₃) 1.3-2.4 (10H, m, C₆H₁₁), 1.87 (s, 3H, CH₃); 5.76, 6.65 (2H, ABq, J =10.5 Hz, methin 6.7-8.2 (9H, m, aromatic protons).

By the above procedures a series of adducts of 16 were prepared. Their analytical and mass spectral data are summarized in Table 4 in which the numbered groups refer to the following structure

This research was supported by the National Research Council of Canada and the Chemistry Department of the University of Alberta.

- 1. P. B. WOLLER and N. H. CROMWELL. J. Heterocycl. Chem., 5, 579 (1968).
- 2. H. W. HEINE and R. PEAVY. Tetrahedron Lett. 3123 (1965).
- 3. R. HUISGEN, W. SCHEER, G. SZEIMIES, and H. HUBER. Tetrahedron Lett. 397 (1966).
- 4. A. PADWA and L. HAMILTON. Tetrahedron Lett. 4363 (1965).
- 5. H. W. HEINE, A. B. SMITH, and J. D. BOWER. J. Org. Chem. 33, 1097 (1968).
- 6. H. W. HEINE, R. E. PEAVY, and A. J. DURBETAKI. J. Org. Chem. 31, 3924 (1966).
- 7. A. PADWA and L. HAMILTON. J. Heterocycl. Chem. 4, 118 (1967).
- A. PADWA and W. EISENHARDT. Chem. Commun. 380 (1968).
- 9. R. HUISGEN, W. SCHEER, and H. HUBER. J. Am. Chem. Soc. 89, 1753 (1967).
- 10. S. OIDA and E. OHKI. Chem. Pharm. Bull. Jap. 16, 764 (1968).
- 11. H. W. HEINE and R. P. HENZEL. J. Org. Chem. 34, 171 (1969).
- J. W. LOWN, G. DALLAS, and T. W. MALONEY. Can. J. Chem. 47, 3557 (1969).

- J. W. LOWN, J. P. MOSER, and R. WESTWOOD. Can. J. Chem. 47, 4335 (1969).
- 14. J. W. LOWN, R. K. SMALLEY, and G. DALLAS. Chem. Commun. 1543 (1968).
- 15. J. W. LOWN, R. K. SMALLEY, G. DALLAS, and T. W. MALONEY. Can. J. Chem. 48, 89 (1970).
- G. DALLAS, J. W. LOWN, and J. P. MOSER. J. Chem. Soc. 2383 (1970).
- 17. J. W. LOWN and J. P. MOSER. Can. J. Chem. 48, 2227 (1970).
- 18. J. W. LOWN and K. MATSUMOTO. Can. J. Chem. 48, 3399 (1970).
- W. J. LINN and R. E. BENSON. J. Am. Chem. Soc. 87, 3657 (1965).
- 20. W. J. LINN. J. Am. Chem. Soc. 87, 3665 (1965).
- 21. P. BROWN and R. C. COOKSON. Proc. Chem. Soc. 185, (1964).
- 22. E. F. ULLMANN and J. E. MILKS. J. Am. Chem. Soc. 86, 3814 (1964).
- 23. P. RAJAGOPALAN and B. G. ADVANI. Tetrahedron Lett. 2689 (1967).
- 24. R. W. HOFFMANN and H. J. LUTHARDT. Chem. Ber. 101, 3851 (1968).
- 25. W. R. DOLBIER and S. H. DAI. Tetrahedron Lett. 4645 (1970).
- 26. THAP DO-MINH, A. M. TROZZOLO, and G. W. GRIFFIN. J. Am. Chem. Soc. 92, 1402 (1970).
- 27. D. R. ARNOLD and L. A. KARNISCHKY. J. Am. Chem. Soc. 92, 1404 (1970).
- 28. R. HUISGEN. Angew. Chem. Int. Ed. Engl. 2, 591 (1963).
- 29. J. M. DUNSTON and P. YATES. Tetrahedron Lett. 505 (1964).
- 30. R. B. WOODWARD and R. HOFFMANN. The conservation of orbital symmetry. Academic Press, New York, N.Y., 1970. p. 87.
- 31. A. HASSNER. J. Org. Chem. 33, 2684 (1968).
- 32. J. W. LOWN and K. MATSUMOTO. Chem. Commun. 692 (1970).
- 33. B. M. TROST. J. Am. Chem. Soc. 91, 918 (1969).
- 34. M. A. BATTISTE and C. T. SPROUSE. Tetrahedron Lett. 4661 (1970).
- 35. M. P. CAVA and F. M. SCHEEL. J. Org. Chem. 32, 1304 (1967).
- 36. R. BRESLOW, G. RYAN, and J. T. GROVES. J. Am. Chem. Soc. 92, 988 (1970).
- 37. (a) K. B. WIBERG and W. J. BARTLEY. J. Am. Chem. Soc. 82, 6375 (1960). (b) M. A. BATTISTE. Tetrahedron Lett. 3795 (1964). (c) G. L. CLOSS, L. E. CLOSS, and W. A. BOLL. J. Am. Chem. Soc. 85, 3796 (1963). (d) M. A. BATTISTE. J. Am. Chem. Soc. 85, 2175 (1963). (e) D. C. F. LAW and S. W. TOBEY. J. Am. Chem. Soc. 90, 2376 (1968).
- J. W. LOWN and K. MATSUMOTO. J. Org. Chem. 36, 1405 (1971).
- 39. J. W. LOWN, T. W. MALONEY, and G. DALLAS. Can. J. Chem. 48, 554 (1970).
- 40. K. ALDER and G. STEIN. Angew. Chem. 50, 510 (1937).
- 41. R. HOFFMANN and R. B. WOODWARD. J. Am. Chem. Soc. 87, 4388 (1965).
- 42. W. C. HERNDON and L. H. HALL. Theoret. Chim. Acta, 7, 4 (1967).
- 43. W. C. HERNDON and L. H. HALL. Tetrahedron Lett. 3095 (1967).

- 44. (a) A. WASSERMANN. Diels-Alder reactions. Elsevier Publishing Co., New York, N.Y., 1965. (b) A. WASSERMANN. J. Chem. Soc. 828, 1511 (1935); 432 (1936).
- 45. R. W. WOODWARD and H. BAER. J. Am. Chem. Soc. 66, 645 (1944).
- 46. J. A. BERSON, A. REMANICK, and W. A. MUELLER J. Am. Chem. Soc. 82, 5501 (1960).
- 47. P. W. Woller and N. H. CROMWELL. J. Org. Chem. 35, 888 (1970).
- 48. (a) R. HUISGEN. Angew. Chem. Int. Ed. Engl. 2, 565 (1963). (b) R. HUISGEN. J. Org. Chem. 33, 2291 (1968).
- 49. È. WEITZ and A. SCHEFFER. Chem. Ber. 54, 2327 (1921).
- 50. M. S. NEWMAN. J. Org. Chem. 26, 2630 (1961). 51. F. M. BERINGER and S. J. HUANG. J. Org. Chem.
- **29**, 445 (1964).
- 52. E. BERGMAN. J. Am. Chem. Soc. 74, 1075 (1952).