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A cationic ruthenium(II) catalyst enabled highly efficient 
oxidative alkenylations of electron-rich arenes bearing 
removable, weakly coordinating carbamates, and allowed for 
cross-dehydrogenative C–H bond functionalization in an aerobic 
manner. 10 

Palladium-catalyzed alkenylations of aryl (pseudo)halides 
with alkenes, Mizoroki-Heck reactions, have matured to being 
among the most reliable methods for the synthesis of 
substituted styrenes.1, 2 A more atom- and step-economical 
strategy, however, relies on twofold functionalizations of 15 

otherwise unreactive C–H bonds as latent functional groups.3 
The vast majority of these cross-dehydrogenative 
alkenylations was accomplished using palladium or rhodium 
complexes, with notable recent progress being accomplished 
by among others Miura and Yu.4, 5 On the contrary, less 20 

expensive ruthenium complexes were only recently identified 
as viable catalysts for environmentally benign twofold C–H 
bond alkenylations. Thereby, carbonyl- and N-heteroaryl-
substituted, thus electron-deficient, arenes as well as anilides 
were converted into the corresponding ortho-olefinated6 25 

products.7 Contrarily, the use of air- and moisture stable 
ruthenium complexes for challenging oxidative C–H bond 
alkenylations with widely accessible phenol derivatives has 
unfortunately thus far proven elusive. In the course of our 
continuing efforts in step-economical C–H bond 30 

functionalizations,8 we devised reaction conditions for 
ruthenium-catalyzed cross-dehydrogenative alkenylations of 
aryl carbamates bearing removable directing groups, on which 
we wish to report herein. Importantly, aryl carbamates are key 
intermediates in organic synthesis, and serve as versatile 35 

organic electrophiles in transition-metal-catalysis.9, 10   
Preliminary studies with a naphthyl carbamate indicated that 
the desired oxidative alkenylation was not viable with CsOAc 
or KPF6 as the co-catalytic additive. However, satisfactory 
results were gratifyingly achieved when employing 10 mol % 40 

of AgSbF6. The desired olefination did not occur in the 
absence of the ruthenium complex [RuCl2(p-cymene)2] (Table 
1, entry 1). Among a set of representative solvents, DME 
turned out to be optimal (entries 2–6), and the catalytic system 
was found to be air-stable (entry 7). Notably, the cross-45 

dehydrogenative alkenylation failed to proceed in the absence 
of AgSbF6 as the co-catalyst (entry 8), thus being suggestive 
of the formation of a cationic ruthenium catalyst. Yet, the 
preformed cationic complex [Ru2Cl3(p-cymene)2][PF6]7e 
bearing the PF6-counteranion did not deliver the desired 50 

product 3a under otherwise identical reaction conditions 
(entry 9). 
 

Table 1 Optimization of oxidative alkenylationa 

 
55 

 

 

Entry Catalyst Solvent Yield (%) 

1 --- DME --- 

2 [RuCl2(p-cymene)2] DMF --- 

3 [RuCl2(p-cymene)2] PhMe --- 

4 [RuCl2(p-cymene)2] DCE 40 

5 [RuCl2(p-cymene)2] t-AmOH 48 

6 [RuCl2(p-cymene)2] DME 84 

7 [RuCl2(p-cymene)2] DME 86b 

8 [RuCl2(p-cymene)2] DME ---c 

9 [Ru2Cl3(p-cymene)2][PF6] DME ---c 

a Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), catalyst (2.5 mol 
%), Cu(OAc)2·H2O (1.0 mmol), solvent (3.0 mL); isolated yields. b Under 
air. c Without AgSbF6. 60 

With an optimized catalytic system in hand, we tested the 
influence of the N-substituents of phenyl carbamates 1 on the 
reaction efficacy (Scheme 1). Thus, dialkyl-substituted 
carbamates 1 furnished the desired products 3 in high yields, 
with atom-economical N,N-dimethyl derivative 1b providing 65 

the best results.  

+
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Scheme 1 Effect of N-substituents on oxidative C–H bond alkenylation. 

Subsequently, we probed the scope of the optimized catalyst 70 

in the twofold C–H bond functionalizations with moisture-
stable phenol derivatives 1 (Scheme 2). The cationic 
ruthenium(II) catalyst proved broadly applicable and tolerated 
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valuable functional groups, including aryl and alkyl fluorides, 
chlorides or bromides, the latter of which should prove 
valuable for a post-synthetic elaborations of products 3. 
Additionally, both electron-deficient as well as electron-rich 
arenes 1 were found to be suitable substrates, and delivered 5 

the corresponding styrenes 3 with excellent E-
diastereoselectivities. 

 
Scheme 2 Scope of oxidative C–H bond alkenylation. 10 

Furthermore, we observed that intramolecular competition 
experiments with meta-substituted substrates 1 proceeded with 
high site-selectivities, furnishing products 3r–3ae as the sole 
products (Scheme 3). The ruthenium(II) complex again 
displayed a useful chemoselectivity, and allowed for the 15 

effective conversion of various acrylic esters 2 as well. 

Scheme 3 Scope within intramolecular competition experiments. 

Importantly, the double C–H bond functionalization was not 
limited to the use of stoichiometric amounts of 20 

Cu(OAc)2•H2O. Indeed, aerobic oxidative alkenylations 
proved viable with Cu(OAc)2•H2O as the cocatalyst under an 
atmosphere of ambient air (Scheme 4).  

 25 

Scheme 4 Aerobic oxidative C–H bond alkenylation. 

Importantly, the carbamate directing group was easily 
removed to deliver the desired phenol 4a (Scheme 5). 

 
Scheme 5 Removal of directing group. 30 

Considering the remarkable activity and high selectivity of the 
cationic ruthenium(II) catalyst, we became interested in 
probing its mode of action. To this end, we conducted 
intermolecular competition experiments with differently 
substituted arenes 1, which revealed electron-rich substrates 35 

to be preferentially converted (Scheme 6, and Scheme S-1 in 
the Supporting Information). 

 
Scheme 6 Intermolecular competition experiments. 

Based on these mechanistic studies as well as our previous 40 

findings with cationic ruthenium(II) catalysts7a,e we propose 
the catalytic cycle to involve an initial base-assisted, 
reversible cycloruthenation.11 Thereafter, coordinative 
insertion of alkene 2 and β-hydride elimination deliver 
product 3, while reductive elimination and reoxidation by 45 

Cu(OAc)2•H2O regenerate the active cationic catalyst. 
In conclusion, we have developed ruthenium-catalyzed 
oxidative C–H bond alkenylations with electron-rich phenol 
derivatives. Thus, a cationic ruthenium(II) complex set the 
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stage for site-selective, broadly applicable olefinations of aryl 
carbamates displaying removable directing groups, which also 
proved viable in an aerobic fashion with ambient air as the 
ideal terminal oxidant. 
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