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ABSTRACT: A highly regioselective and stereospecific 
rhodium-catalyzed cyanomethylation of tertiary allylic 
carbonates for the construction of acyclic -quaternary 
stereogenic nitriles is described.  This protocol represents 
the first example of a metal-catalyzed allylic substitution 
reaction using a triorganosilyl-stabilized acetonitrile 
anion, which permits access to several carbonyl 
derivatives that are challenging to prepare using 
conventional pronucleophiles.  The synthetic utility of the 
stereospecific cyanomethylation is further exemplified 
through the construction of the intermediate utilized in the 
total synthesis of both (+)-epilaurene and (+)–α-
cuparenone. 

Alkyl nitriles represent versatile motifs that are 
omnipresent in an array of important bioactive natural 
products and pharmaceuticals, in addition to being 
versatile synthetic intermediates.1,2  Consequently, the 
ability to readily employ alkyl nitriles as pronucleophiles 
in asymmetric transition-metal catalysis is highly 
desirable, albeit challenging because of the fluxional 
nature of the anion (C- vs. N-metalated).3,4  For instance, 
the Lewis basic nature of nitrile anions can render the 
transition-metal unreactive by binding the nitrogen and 
carbon atoms, in addition to forming stable dinuclear 
complexes.4,5  Furthermore, the alkylation of primary 
nitriles often results in bis-alkylation products, because of 
the similar acidity of the -protons in the substrate and 
product.  Nevertheless, we recently reported the first 
enantioselective rhodium-catalyzed allylic alkylation of 
-substituted benzyl nitriles for the construction of 
challenging acyclic -quaternary nitrile stereocenters 
(Scheme 1A).6  We envisaged the ability to employ a 
simple alkyl nitrile, such as acetonitrile, would provide a 
complementary approach, given that it would access the 
corresponding acyclic -quaternary stereogenic 
nitriles.7,8  Nevertheless, the direct transition metal-
catalyzed cyanomethylation reaction has been 
underdeveloped,9 which can presumably be ascribed to 
the aforementioned challenges and the fact that it 
constitutes a hard unstabilized carbanion (Scheme 1B, 
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i).10,11  As a result, several synthetic equivalents has been 
developed that circumvent the limitations of the 
acetonitrile anion and thereby facilitate selective 
cyanomethylations,12,13 in which the 
(trimethylsilyl)acetonitrile (TMSAN) has emerged as a 
particularly versatile synthon for conventional 
electrophiles.14  A key and striking feature with this 
pronucleophile is the ability to generate either the silyl 
stabilized anion or the unstabilized carbanion via the 
direct deprotonation or cleavage of the carbon-silicon 
bond, respectively (Scheme 1B, ii).16-17a  Notably, the 
trimethylsilyl stabilized acetonitrile carbanion undergoes 
conjugate addition in the absence of copper, which further 
supports the soft nature of the nucleophile.17  
Surprisingly, the application of either of these anions in 
metal-catalyzed cross-coupling reactions has been 
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limited.18,19  We envisioned using the stabilized 
acetonitrile carbanion in a rhodium-catalyzed allylic 
substitution with tertiary allylic carbonates would provide 
a novel quaternary allylic cyanomethylation product 
bearing two synthetic handles.  Moreover, given the 
versatility of nitriles, this transformation would provide a 
unified strategy to access several related carbonyl 
derivatives that have proven challenging for conventional 
pronucleophiles.20,21  Herein, we now describe the first 
highly regioselective and stereospecific rhodium-
catalyzed cyanomethylation of tertiary allylic carbonates 
through the traceless activation of an acetonitrile 
carbanion for the construction of acyclic -quaternary 
stereogenic nitriles (Scheme 1C).

Table 1. Optimization of the Regioselective and 
Stereospecific Rhodium-Catalyzed Allylic 
Cyanomethylation using Tertiary Carbonate 2aa

ent
ry base

1, R3 =
3a:4a 
(b/l)
b

Yield 
of 3a 
(%)c

1d nBuLi Me3 a ≥19:1 32

2d sBuLi “ “ ≥19:1 11

3d LDA “ “ ≥19:1 30

4d LiHMDS “ “ ≥19:1 35

5 “ Et3 b ≥19:1 40

6 “ iPr3 c ≥19:1 10

7 LiHMDS
tBuMe

2

d
≥19:1

90 
(88)e

a All reactions were performed on a 0.25 mmol reaction scale using 
10 mol % Rh(COD)2OTf, 30 mol % P(OPh)3, 2.0 equiv 1, and 1.9 
equiv of base in THF (2.5 mL) at 0 °C to room temperature for ca. 
16 hours.  b Regioselectivity was determined by 500 MHz 1H NMR 
analysis of the crude reaction mixtures.  c GC yields of 3a.  d No 
TBAF.  e Isolated yield of 3a.

Table 1 outlines the optimization of the regioselective 
rhodium-catalyzed allylic cyanomethylation.  In 
accordance with our hypothesis, we examined the 
traceless activation of an acetonitrile equivalent that 
provides a stabilized nucleophile to match the reactivity 
of the soft enyl organorhodium intermediate.22  Treatment 
of tertiary allylic carbonate 2a with the lithium anion of 
commercially available TMSAN (1a), in the presence of 
triphenyl phosphite modified Rh(COD)2OTf, furnished 
the branched regioisomer 3a in 32% yield with excellent 
regioselectivity (Table 1, entry 1).  In light of the 
relatively poor efficiency, we elected to explore the 
impact of base on the reaction.  To this end, a series of 
bases were examined, in which sec-butyllithium was 
significantly less efficient (entry 2), and the reactions 
with lithium diisopropylamine (LDA) and lithium 
bis(trimethylsilyl)amide (LiHMDS) provided 
comparable efficiency to that with n-butyllithium (entry 

Table 2. Scope of the Regioselective Rhodium-Catalyzed 
Allylic Cyanomethylation Reactiona,b,c

a All reactions were performed on a 0.5 mmol reaction scale using 
10 mol % Rh(COD)2OTf, 30 mol % P(OPh)3, 2.0 equiv 1d and 1.9 
equiv of LiHMDS in THF (5.0 mL) at 0 °C to room temperature 
for ca. 16 hours.  b Regioselectivity was determined by 500 MHz 
1H NMR analysis of the crude reaction mixtures.  c Isolated yields.  
d Employing (R)-2f (94% ee) provides (S)-3f (94% ee) in 100% cee.  
e From TMS-protected alkyne.  f Isolated yield over two steps.  g 

From TBS-protected alcohol.  h One-pot protocol from the tertiary 
allylic alcohol.
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1 vs entries 3 and 4).  Interestingly, there is no evidence 
of polyalkylation at the α-position of the -quaternary 
nitrile 3a, which suggested that the stability of the 
pronucleophile was the reason for the reduced efficiency.  
Consequently, we envisioned that replacing the 
trimethylsilyl group, which is prone to desilylation by 
alkoxides generated from the leaving group,16 with more 
sterically hindered silyl groups may improve the 
efficiency of this process.  In accord with this reasoning, 
the bulkier silyl groups would be retained and thereby 
require the in situ addition of fluoride, albeit the isolation 
of the -silyl nitriles may also be desired in some cases.23  
Interestingly, the (triethylsilyl)acetonitrile (1b) is slightly 
more efficient (entry 5), whereas the 
(triisopropylsilyl)acetonitrile (1c) is inferior (entry 6).  
Gratifyingly, the (tert-butylsilyl)acetonitrile (1d) 
provided the optimal pronucleophile for this process, 
which afforded the -quaternary nitrile 3a in 88% isolated 
yield in a highly regioselective manner.24,25  Hence, the 
silyl group plays a critical role in the generation, stability 
and reactivity of the α-cyano carbanion in this type of 
alkylation reaction.

Table 2 summarizes the application of the optimized 
reaction conditions (Table 1, entry 7) to a variety of 
acyclic tertiary carbonates 2a-aa.  The reaction is highly 
selective for carbonates containing an aromatic 
substituent at both the β- and γ-positions, albeit less 
efficient with β-substitution (Table 2, entries 1 and 2).  
Interestingly, the reaction also tolerates various tertiary 
carbonates containing alkyl substitution patterns, 
including linear alkyl chains (entry 3), in addition to β- 
and γ-branched alkyl carbonates to provide moderate to 
excellent yield (entries 4 and 5).  More importantly, the 
reaction affords the corresponding -quaternary nitriles 
for substrates with trisubstituted and terminal olefins 
(entries 6 and 7), in addition to providing terminal 
alkynes, derived from the TMS-protected internal alkyne, 
with excellent selectivity (entry 8).  Notably, the reaction 
is chemoselective as exemplified by the primary alkyl 
chloride, ester and nitrile-containing tertiary carbonates, 
which are challenging for more conventional carbanions 
(entries 9-11).  Moreover, the reaction can be performed 
in the presence of benzyl protected γ- and β-alcohol 
containing carbonates (entries 12-14), while also 
providing the free alcohol after in situ deprotection of the 
OTBS ether in good yield (entry 15).  Furthermore, the 
scope of the tertiary allylic carbonates can be readily 
expanded to aryl and heteroaryl tertiary carbonates 
(entries 16-27).  In this case, a range of electron-rich and 
electron-deficient aryl carbonates provide the 
corresponding β-quaternary nitriles in excellent yield and 
with high regioselectivity (entries 16-23).  The reaction 
can also be conducted using a one-pot procedure from the 
tertiary allylic alcohol to furnish the desired product after 
in situ generation of the allylic carbonate (entry 16).  
Similarly, several tertiary heteroaromatic allylic 
carbonates provide excellent efficiency and selectivity in 

this process (entries 24-27), which are applicable to 
medicinal chemistry.  Hence, a key and striking feature 
with this transformation is the high selectivity favoring 
the branched nitrile products in all cases, in which there 
was no detectable linear regioisomer (by 500 MHz 1H 
NMR analysis of the crude reaction mixtures).  Overall, 
this transformation provides a direct, efficient and 
selective route to access an array of β-quaternary 
substituted nitriles.

To further highlight the synthetic utility of this 
transformation, we elected to examine the stereospecific 
rhodium-catalyzed cyanomethylation using a chiral 
nonracemic tertiary carbonate.26  Treatment of the 
enantiomerically enriched tertiary allylic carbonate (S)-
2q under the optimal reaction conditions, using a 
decreased catalyst loading, furnished the chiral β-
substituted nitrile (S)-3q in 84% yield in a highly 
regioselective and stereospecific manner (100% cee) 
(Scheme 2A).27  Gratifyingly, the stereospecific nature of 
this transformation is demonstrated with an alkyl 
substituted allylic carbonate (R)-2f, which also proceeds 
with 100% cee, thus demonstrating that this is generally 
applicable to a range of substrates (vide supra).
Scheme 2. Synthetic Utility of the Rhodium-Catalyzed 
Allylic Cyanomethylation.

Scheme 2B illustrates the synthetic utility of the nitrile 
products through the conversion of (S)-3q into an array of 
important functional groups, which also permits the 
stereochemical course of the alkylation to be established.  
Specifically, the methyl ketone 5, which is of known 
absolute configuration, was readily obtained through the 
addition of methylmagnesium bromide and subsequent 
hydrolysis of the imine.28  Hence, the reaction proceeds 
through a double inversion process to provide overall 
retention of configuration, which confirms the anion of 
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(tert-butylsilyl)acetonitrile (1d) behaves as a soft 
nucleophile in this transformation.  Furthermore, the level 
of stereospecificity is remarkable, given our previous 
efforts with cyanohydrin pronucleophiles.29  The 
hydrolysis of the nitrile (S)-3q under basic reaction 
conditions with hydrogen peroxide affords the 
corresponding amide 6 in excellent yield and with 
retention of stereochemistry.  Additionally, the reduction 
of the nitrile (S)-3q with DIBAL-H provides the aldehyde 
7, to further demonstrate the utility of the nitrile products.  
Notably, the preparation of the β-quaternary aldehyde 7 
provides a key intermediate in the syntheses of the natural 
products (+)-laurene (8) and (+)-α-cuparenone (9).30

In conclusion, we have developed a highly 
regioselective and stereospecific rhodium-catalyzed 
allylic cyanomethylation of both aryl and alkyl chiral 
tertiary allylic carbonates with a novel acetonitrile 
synthetic equivalent.  This transformation demonstrates 
the first regioselective alkylation of tertiary allylic 
carbonates with a triorganosilyl-stabilized nitrile anion 
and affords an efficient one-pot access to acyclic -
quaternary nitriles.  Additionally, the synthetic utility of 
the nitrile products is exemplified in functional group 
transformations, one of which permits formal syntheses 
of (+)-epilaurene and (+)-α-cuparenone.  Hence, given 
the utility of this transformation to prepare important -
quaternary nitriles, ketones, aldehydes and amides, we 
anticipate that it will provide a useful method for the 
construction of challenging natural products and 
pharmaceuticals.
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Regioselective and Stereospecific Rhodium-Catalyzed Allylic Cyanomethylation with an Acetonitrile Equivalent: Construction of 
Acyclic β-Quaternary Stereogenic Nitriles 
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