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Elimination of inequality constraints in convex optimization and
application to yield design

S. Turgeman and B. Guessab

Abstract The problem of convex optimization under in-
equality constraints is considered. It is established, using
Slater’s hypothesis only, that this problem is equivalent to
an unconstrained optimization problem, independent of
any penalization coefficient. A consequence of this result
concerns operational determination of an upper bound of
the exterior penalty coefficient, from which the conven-
tional exterior penalty function is exact. The optimiza-
tion methods developed find a particularly propitious
field of application in yield design. Numerical determin-
ation of the tensile strength of a bar with cuts illustrates
this point.

Key words convex constrained optimization, exact
penalty function, minimax optimization, yield design,
limit analysis

1
Introduction

The optimization problem considered is

µ∗ =min f(x) ,

gi(x) ≤ 0 , (i= 1, . . . ,m) , (1)

where f and gi (i= 1, . . . ,m) are convex functions of IR
n

in IR.
This problem concerns in particular yield design,

a field of application chosen to test the methods of solu-
tion presented in this paper.
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The literature relating to solving problem (1) is abun-
dant and highlights two major families of methods: pri-
mal methods, operating directly on (1), and dual methods
which associate a succession of unconstrained optimiza-
tion problems to (1). From this standpoint, the study
presented here leads to solvingmethods based on this sec-
ond family.
A function H of IRn in IR is first exhibited admitting

a global minimum on IRn equal to µ∗. This result is ob-
tained using Slater’s hypothesis only, which appears as
a minimum condition in convex optimization.
We know that this hypothesis is sufficient for the

penalty function

P (x) := f(x)+K‖g+(x)‖ , (2)

[where g+(x) ∈ IRm has as components g+i (x) =
max{gi(x), 0} (i = 1, . . . ,m) and ‖ · ‖ is a norm of IRm]
to be exact, i.e. for its minimum to be equal to µ∗ for
K sufficiently great but finite (K ≥ K0 ≥ 0). Studies
concerning penalty functions associated to convex or non-
convex problems are numerous and their purpose is in
general to establish sufficient conditions ensuring this
exactitude property (Pietrzykowski 1969; Conn 1973;
Fletcher 1973; Bertsekas 1975; Han and Mangasarian
1979; Coleman andConn 1980; Di Pillio andGrippo 1986,
for example). They do not, on the other hand, enable an
upper bound ofK0 to be a priori determined.
The functionH unlike the function P does not depend

on any penalization coefficient. It does however present
the drawback of being nonconvex, which makes seeking
its global minimum problematic.
This difficulty is overcome by considering the func-

tion H = max{H, f} whose global minimum on IRn is
also equal to µ∗. The function H, although nonconvex,
presents the advantage of not presenting local minima
strictly greater than µ∗. Solving (1) by direct minimiza-
tion ofH can therefore be envisaged.
The second point of this study has the purpose of ob-

taining an operational upper bound of K0. The function
H is in fact expressed naturally in the form (2), with the
difference that K is to be replaced by a function K̃(x) of
IRn in IR. It is then shown that knowing a lower bound of
µ∗ (which can be determined by minimization of P with
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K fixed at a positive value, even low) enables an upper
boundK1 ofK0 to be effectively computed.
Finally this study leads to two methods of solving (1):

– either by a direct minimization ofH;
– or by a minimization of P ,K being governed byK1.

These methods find a particularly propitious field of
application in the static yield design (or limit analysis)
method.
Firstly, a sufficient condition related to the yield cri-

teria can in fact be specified for which Slater’s hypothesis
is satisfied. Secondly, a point x̃ can be exhibited, without
prior computation, such that gi(x̃) < 0 (i = 1, . . . ,m).
This enables the functionH to be explicited and (1) to be
solved by minimization ofH.
Furthermore, in numerous practical yield design ap-

plications, a lower bound of µ∗ can be obtained by sim-
ple mechanical reasonings. This lower bound of µ∗ then
leads, without prior optimization, to an upper bound
of K0. This is the case in the example considered by
Andersen et al. (1998), consisting in determining the ten-
sile strength of a bar with cuts, where it is shown that
K simply has to be taken equal to 0.5 (whereas µ∗ is
about one) for the associated penalty function P (x) to be
exact.
Numerical solution of this mechanical problem en-

ables a comparison of the performances of the methods of
solution presented.

2
Elimination of the inequality constraints in convex
optimization

The problem (1) is considered and the following is noted:

– ĝ(x) the convex function of IRn in IR defined by:

ĝ(x) := max
i=1,... ,m

gi(x) , (3)

– G the domain of the possible solutions:

G= {x ∈ IRn such that ĝ(x) ≤ 0} . (4)

It is assumed that:

A1: the problem (1) admits a solution µ∗ achieved in
x∗ ∈G,

A2: (Slater’s hypothesis): x̃ exists such that ĝ(x̃)< 0.

For any (λ,u) ∈ IR+× IRn we have:

ĝ

(
λx̃+u

λ+1

)
≤
λĝ(x̃)+ ĝ(u)

λ+1
, (5)

due to the convexity of ĝ.

However:

ĝ(u)≤
∥∥g+(u)∥∥

p
, ∀u ∈ IRn , (6)

where ‖g+(u)‖p designates the p-norm of the vector
g+(u) ∈ IRm.
It results from (5) and (6) that

ĝ

(
λx̃+u

λ+1

)
≤
λĝ(x̃)+‖g+(u)‖p

λ+1
, (7)

We note

G1 =

{
(λ,u) ∈ IR+× IRn/ĝ

(
λx̃+u

λ+1

)
≤ 0

}
, (8)

G2 =
{
(λ,u) ∈ IR+× IRn/

∥∥g+(u)∥∥
p
=−λĝ(x̃)

}
, (9)

According to (7), these sets are such that

G2 ⊂G1 . (10)

We then have, due to convexity of f and according to (10),

µ∗ = min
(λ,u)∈G1

f

(
λx̃+u

λ+1

)
≤ min
(λ,u)∈G1

λf(x̃)+f(u)

λ+1
≤

min
(λ,u)∈G2

λf(x̃)+f(u)

λ+1
. (11)

Taking account of the definition of G2 [cf. (9)], the
variable λ can be eliminated in (11), whence

µ∗ ≤ min
u∈IRn

H(u) , (12)

with H the function of IRn in IR defined by

H(u) :=
f(x̃) ‖g+(u)‖p− ĝ(x̃)f(u)

‖g+(u)‖p− ĝ(x̃)
. (13)

AsH(x∗) = µ∗, it then follows:

Proposition 1. The function H(u) defined in (13) ad-
mits a global minimum on IRn equal to µ∗.

It is clear that the function H is not convex which
makes µ∗ difficult to obtain by minimization of H. To
overcome this difficulty, we consider the functionH of IRn

in IR defined by

H(u) := max[H(u), f(u)] =

{
H(u) if f(u)≤ f(x̃) ,

f(u) if not.

(14)

Proposition 2. The function H defined in (14) admits
a global minimum on IRn equal to µ∗ and does not admit
local minima strictly greater than µ∗.

Proof. It can be assumed, without any loss of generality,
that f(x̃) = 0 and that ĝ(x̃) =−1.
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The functionH is then such that

H(u) =

{
H(u) = f(u)

‖g+(u)‖
p
+1

if f(u)≤ 0 ,

f(u) if not .
(15)

It obviously admits a global minimum on IRn equal
to µ∗ as it is greater than the function H and we have
H(x∗) = µ∗.
Let us assume that H admits in ũ ∈ IRn a local min-

imum H(ũ) strictly greater than µ∗. A neighbourhood
V (ũ) of ũ therefore exists such that

H(u)≥H(ũ) , ∀u ∈ V (ũ) . (16)

If f(ũ) > 0, (16) implies, taking account of the defin-
ition ofH [cf. (15)]:

f(u)≥ f(ũ) , ∀u ∈ V ′(ũ) , (17)

where V ′(ũ) is a neighborhood of ũ.
This means that f admits in ũ a local minimum

f(ũ) > µ∗ (since µ∗ ≤ 0), which is impossible due to the
convexity of f .
The assumption f(ũ) > 0 is therefore absurd and we

necessarily have f(ũ)≤ 0, whenceH(ũ) =H(ũ).
The points ũ and x∗ both belong to the convex domain

F0 = {x∈ IRn/f(x)≤ 0}. A point u0 ∈]ũ,x∗]∩V (ũ)∩F0
consequently exists. This point u0 can be written as

u0 =
ũ+λx∗

λ+1
, λ > 0 . (18)

It is such that

H(u0)≥H(ũ)

due to (16) and to the fact that u0 ∈ V (ũ),

⇔ H(u0)≥H(ũ)

due to the fact that u0 ∈ F0 and to (15),

⇒
f(ũ)+λµ∗

(λ+1)
(
‖g+(u0)‖p+1

) ≥ f(ũ)

‖g+(ũ0)‖p+1

due to the convexity of f and (18),

⇒
f(ũ)+λµ∗

‖g+(ũ)‖p+λ+1
≥

f(ũ)

‖g+(ũ0)‖p+1

due to the convexity of ‖g+(u)‖p and (18),

⇔ µ∗ ≥H(ũ) ,

which is in contradiction with the assumptionH(ũ)>µ∗.

3
Exact penalty function

The function H defined in (13) enables the function
P (x) := f(x)+K‖g+(x)‖p to be proved to be exact for
K ≥K0 ≥ 0 and above all an operational upper bound of
K0 to be obtained. The function H can in fact be written
in the form

H(u) := f(u)+ K̃(u)‖g+(u)‖p , (19)

with K̃, a function of IRn in IR defined by

K̃(u) :=
f(x̃)−f(u)

‖g+(u)‖p− ĝ(x̃)
. (20)

We obviously have, for any strict µ1 lower bound of µ
∗:

µ∗ = min
u∈IRn

{
max[f(u), µ1]+ K̃(u)‖g

+(u)‖p
}
. (21)

Consequently, for any u ∈ F1 = {u ∈ IRn / f(u)≥ µ1}, we
have

µ∗ ≤ f(u)+K1‖g
+(u)‖p , (22)

with

K1 =
f(x̃)−µ1
−ĝ(x̃)

, (23)

due to the fact thatK1 ≥maxu∈F1 K̃(u).
Let us assume that:

∃u ∈ IRn

such that

f(u)+K1‖g
+(u)‖p < µ

∗ . (24)

We must have, according to (22), f(u) < µ1. The func-
tion f , continuous on the segment [u,x∗], takes any in-
termediate value between f(u) and f(x∗) = µ1 at at least
one point of this segment. As f(u)< µ1 < µ

∗, u1 ∈]u,x∗[
therefore exists such that f(u1) = µ1. The point u1 =
αx∗+(1−α)u can be written with α ∈]0, 1[. As u1 ∈ F1,
the inequality (22) holds in u1 and is written, due to the
convexity of f(u) and of ‖g+(u)‖p, as

µ∗ ≤ αf(x∗)+ (1−α)
[
f(u)+K1‖g

+(u)‖p
]
. (25)

The second member of (25) is however strictly smaller
than µ∗, on account of (24).
The assumption (24) is therefore absurd and conse-

quently

P (u)≥ µ∗ , ∀u ∈ IRn , ∀K ≥K1 . (26)

Noting that P (x∗) = µ∗ for anyK we have

µ∗ = min
u∈IRn

P (u) , ∀K ≥K1 . (27)
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Finally, by making µ1 tend to µ
∗, the following result is

obtained:

Proposition 3. The penalty function P (u) is exact for
anyK ≥K0 withK0 = [f(x̃)−µ∗]/[−ĝ(x̃)].

It should be emphasized that any lower bound µ1 of
µ∗ provides an upper bound K1 of K0, with K1 defined
in (23).
This result justifies the following algorithm where (1)

is solved by minimization of P (u) withK governed by the
expression (23):

1. We noteK =K1 ≥ 0; α a real number different from 1.
2. We solve P (x1) = min

x∈IRn
P (x).

3. If ‖g+(x1)‖p = 0 or if α = 1 then f(x1) = µ∗; if not,
we noteK1 = [f(x̃)−f(x1)]/[−αĝ(x̃)] with α≥ 1 such
thatK1 >K and we go back to step 2.

The role of the parameter α is to limit a variation of K
which may be too large from one iteration to the other.

4
Application to yield design

Solving problem (1) by minimization of H(u) or of P (u)
(cf. Sect. 3) requires a point x̃ to be previously deter-
mined such that ĝ(x̃) < 0. This point x̃ can be obtained
by solving the unconstrained discrete minimax problem
(Turgeman and Guessab 1999):

ĝ(x̃) = min
x∈IRn

max
i=1,... ,m

gi(x) =

min
(η,x)∈IR×IRn

{
η+
∥∥[g(x)−η]+∥∥

p

}
. (28)

Problem (28) can be interrupted as soon as the function
ĝ becomes strictly negative. We can also choose among
the iterates xk such as ĝ(xk)< 0 the one which minimizes
K1 [cf. (23)] if a lower bound µ1 of µ

∗ is known. However,
for convex optimization problems arising from static for-
mulation of yield design (Salençon 1983) or limit analysis,
such a point x̃ can be exhibited without computation for
a large class of materials.
Let Ω be a mechanical system constituted by k̂ mate-

rials characterized by strength convex criteria grk(σσσ)≤ 0
(k = 1, . . . , k̂), with σσσ the stress tensor. As this system
is subjected to a loading mode dependent on p parame-
ters, the extreme loading λ∗Q0 (λ

∗ ≥ 0) in a fixed direc-
tion Q0 (Q0 ∈ IRp) is sought for. Numerical formulation
of the static yield design method by finite elements con-
sists in maximizing λ (and therefore in minimizing −λ)
with equality linear constraints (which result from static
admissibility) and convex inequality constraints (which
result from strength conditions). Elimination of the linear
constraints leads to solving of a problem of the form (1)
with µ∗ =−λ∗. If the strength criteria are such that

grk(000)< 0 , k = 1, . . . , k̂ , (29)

this problem complies with Slater’s hypothesis as the con-
straints gi(x) of (1) are strictly satisfied for

x̃=000 ∈ IRn , (30)

and we have in addition f(x̃) = 0 whence [cf. (14)]

µ∗ = min
u∈IRn

max

{
−ĝ(000)f(u)

‖g+(u)‖p− ĝ(000)
, f(u)

}
. (31)

Let us note that the sufficient condition (29) is often sat-
isfied. This is the case when the constituent materials
comply for example with von Mises, Tresca or Coulomb
(with nonzero cohesion) criteria. Furthermore, for nu-
merous mechanical problems, an upper bound λ1 of λ

∗

(i.e. a lower bound −λ1 of µ∗) can be obtained by simple
mechanical reasonings. This results, if (29) holds, in an
immediate upper bound K1 =−λ1/ĝ(000) ofK0 [cf. (23)].
As an example, let us consider the plane strain test

problem, illustrated in Fig. 1 and described by Andersen
et al. (1998): uniform tensile strength of a bar with exter-
nal symmetric cuts.

Fig. 1 Test problem: uniform tensile strength of a bar with
symmetric cuts (a= L/3)

The bar is formed by a von Mises material of limit
shear strength c, i.e.

gr(σσσ) =

(
σtt−σvv
c

)2
+4
(σtv
c

)2
−4 .

The loading parameter λ can be defined in adimensional
manner by λ= σtt

c
. The extreme loading sought for λ∗ is

lower than the extreme loading λ1 of a bar without cuts.
As λ1 is known and equal to 2 and (29) holds (with in
addition ĝ(000) =−4), we haveK1 = 0.5, whence

µ∗ = min
u∈IRn

[
f(u)+0.5‖g+(u)‖p

]
. (32)
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This example is not atypical. For a large number of
mechanical problems (in particular plasticity homoge-
nization problems), simple reasonings can lead to deter-
mination of an operational upper bound ofK0 as in (32).
Problems (31) and (32) corresponding to a division

into triangular finite elements of the quarter OABC of the
volume V of the bar are solved, on account of the mate-
rial and loading symmetries. For a mesh with 5184 finite
elements the number of variables of problems (31) and
(32) is equal to 1214 (the stress fields considered are con-
stant on each finite element and discontinuous between
two adjacent finite elements). The corresponding approx-
imation λ∗− of λ∗ obtained is: λ∗− = 1.3790 for problem
(31); λ∗− = 1.3789 for problem (32). By Andersen and
Christiansen (1998), a computation of λ∗ is performed
using the kinematic limit analysis method which gives an
upper bound λ∗+ = 1.3894 of λ∗.
Problems (31) and (32) lead to very close λ∗− values

(which is not surprising) with however a large number of
iterations for (32). Comparison between the values λ∗−

and λ∗+ leads one to think that the optimization methods
developed, which present the advantage of simplicity, are
efficient at least for the type of problems considered.

5
Conclusions

It has been shown that, using Slater’s hypothesis only,
the solution µ∗ of problem (1) is the unconstrained global
minimum of a functionH or of a functionH =max(H, f).
The functions H and H are independent of any penal-
ization coefficient and totally explicited when a point x̃
strictly verifying the inequality constraints of problem (1)
is known.
The function H presents the property of not admit-

ting local minima strictly greater than µ∗. This property
enables its global minimum to be effectively computed.
The function H enables an upper bound K1 of K0 to

be determined, a value starting from which the exterior
penalty function P is exact. The upper bound K1 can ef-
fectively be computed when x̃ and a lower bound µ1 of µ

∗

are known.
We therefore have two methods available for solving

(1) by minimization ofH or of P withK governed byK1.
These methods find a particularly propitious field of

application in the static yield design method. If the zero

stress tensor strictly verifies the strength conditions of the

constituent materials of the mechanical system consid-
ered, a point x̃ can in fact be exhibited without compu-
tation. This condition, although it is not general, is very
often achieved. Moreover, simple mechanical reasonings
are sufficient, for a large number of problems, to deter-
mine lower bounds of µ∗ and subsequently to explicit
exact penalty functions (without having to perform iter-
ative computation of the penalty coefficient).
The example of determination of the tensile strength

of a bar with cuts is an illustration of this. For this prob-
lem, K simply has to be fixed at 0.5 for P to be exact.
Minimization of the functions H and P leads to identical
results the precision of which can be estimated by com-
parison with those of the literature resulting from a kine-
matic approach.
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