## Carbohydrate to Carbocycle Conversions via Intramolecular Propargylation with $Et_2Zn/Pd(0)/Yb(OTf)_3$

José M. Aurrecoechea,\* Mónica Arrate, Beatriz López

Departamento de Química Orgánica II, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain Fax 34-94 464 8500; E-mail: qopaufem@lg.ehu.es

Received 4 April 2001

**Abstract:** Carbohydrate-derived propargylic esters react with  $Et_2Zn$  and catalytic Pd(0), in the presence of a Lewis acid, to generate nucleophilic allenyl metal species capable of intramolecular addition to a tethered carbonyl group. This results in the formation of enantiomerically pure functionalized cyclopentanes with high stere-oselectivity and in preparatively useful yields. A high preference is observed for a *trans* relationship between the alkynyl and OH groups in the cyclopentane products, implying that the cyclization proceeds through open transition states.

Key words: carbohydrates, carbocycles, cyclizations, palladium, zinc

The stereoselective synthesis of densely functionalized carbocycles from carbohydrate starting materials is a topic of current interest.<sup>1</sup> We have recently reported that treatment of modified carbohydrates 1 with the one-electron reducing agent  $SmI_2$  and a catalytic amount of Pd(0)brings about the formation of homopropargyl cyclopentanols 4 (Scheme 1).<sup>2</sup> These transformations are thought to proceed through the intermediacy of Pd(II)-complexes 2 resulting from Pd(0)-promoted carbohydrate ring-opening. Intermediates 2 are then reduced in situ with two equivalents of SmI<sub>2</sub>, presumably generating the cyclizing carbanionic species  $\mathbf{3}$  and regenerating the Pd(0) catalyst. Access to intermediates analogous to 2 and 3 can also be gained, under similar treatment with SmI<sub>2</sub>/Pd(0),<sup>3</sup> from non-carbohydrate open-chain propargylic esters 5 with a tethered carbonyl group. These two methods for preparation of carbocycles 4 are complementary in that the conversion  $5 \rightarrow 4$  is only effective for ketone substrates ( $\mathbb{R}^2 \neq$ H)<sup>3</sup> whereas substrates 1 ( $R^2 = H$ ) function as aldehyde equivalents.<sup>2</sup> Therefore, the scope of this general strategy for conversion of carbohydrates into carbocycles would be significantly expanded with the use of substrates **5** derived from carbohydrates. In this manner, a more diverse array of enantiomerically pure cyclopentanes **4**, with  $R^2 \neq$ H, would become readily available.

In related work, the transmetalation of analogous allenyl-Pd(II) complexes **6** with  $Et_2Zn$  or InI has been utilized to generate the corresponding organometallic species **7** or **8**, respectively, capable of intermolecular addition to a carbonyl derivative to yield homopropargyl alcohols **10** with excellent stereocontrol (Scheme 2).<sup>4</sup> The intramolecular application of these processes to effect carbohydrate-to-carbocycle conversions of the type **1**, **5**  $\rightarrow$  **4** through intermediates **3** (MLn = ZnX, InIX), would be also a valuable addition to the synthetic chemist repertoire. This paper reports our preliminary results in this area.



Scheme 2





Synlett 2001, No. 6, 872-874 ISSN 0936-5214 © Thieme Stuttgart · New York

Appropriate model substrates for this study were prepared from commercial 2,3,4,6-tetra-O-benzylglucopyranose (11) in three steps as outlined in Scheme 3. Key to this straightforward synthesis was the chemoselective benzoylation<sup>5</sup> of propargylic alcohols 12. Oxidation of the remaining secondary hydroxyl group in benzoates 13 afforded the corresponding ketones 14.



Scheme 3 a) H-C≡C-MgBr; b) BnO(CH)<sub>2</sub>)<sub>2</sub>-C≡C-Li; c) BzCl, Pyr.; d) PCC, NaOAc; e) Sml<sub>2</sub>, *t*-BuOH

Treatment of **14a** with either  $SmI_2/Pd(0)$  or  $Et_2Zn/Pd(0)$ , led to substantial degradation whereupon methyl ketone **15a** and benzyl alcohol were isolated in low yields. Ketones **15** were independently prepared in high yield by treatment of **14** with  $SmI_2/t$ -BuOH<sup>6</sup> and their reactivity with both  $SmI_2/Pd(0)$  and  $Et_2Zn/Pd(0)$  was tested.

The reactions of methyl ketones **15** with  $\text{SmI}_2/\text{Pd}(0)$  resulted again in degradation, with benzyl alcohol being the only identified product. On the other hand, the same substrates produced cyclopentanes **16** when treated with  $\text{Et}_2\text{Zn/Pd}(0)$  in the presence of an external Lewis acid (Scheme 4). In the absence of this no reaction was observed at room temperature and higher temperatures led to the degradation of **15**. The stereochemistry of cyclopentanes **16** was unambiguously determined with the aid of <sup>1</sup>H NMR NOE experiments.<sup>7</sup>





A number of reaction conditions have been tested by changing solvent, Pd catalyst and Lewis acid. So far,

Yb(OTf)<sub>3</sub> has been found to be the most effective Lewis acid to promote these reactions. ZnCl<sub>2</sub>, TiCl<sub>4</sub> and TMSCl gave inferior results and TMSOTf led only to degradation. As for the Pd(0) catalyst, Pd(PPh<sub>3</sub>)<sub>4</sub>, Pd(OAc)<sub>2</sub>•4PBu<sub>3</sub> and  $Pd_2(dba)_3 \cdot 4PBu_3$  were all found to give good yields of **16**. Pd<sub>2</sub>(dba)<sub>3</sub>•4PPh<sub>3</sub> and Pd(OAc)<sub>2</sub>•4PPh<sub>3</sub> gave inferior results while PdCl<sub>2</sub>(dppf)<sub>2</sub> and Pd(OAc)<sub>2</sub>•PPh<sub>3</sub><sup>8</sup> were ineffective. Both THF and benzene are useful solvents for these reactions. CH<sub>2</sub>Cl<sub>2</sub> has also been effective but its generalized use was not explored. For practical purposes, the combination of Yb(OTf)<sub>3</sub> as Lewis acid with a Pd(OAc)<sub>2</sub>•4PBu<sub>3</sub> catalyst and benzene as solvent gave the best results in terms of combined yields and diastereoselectivities.<sup>9</sup> Under these conditions, one diastereoisomer was obtained as a single or very major product in preparatively useful yields (Scheme 4).

Interestingly, the stereochemical course of these reactions departs from that reported for the corresponding intermolecular additions of allenylzinc reagents to aldehydes.<sup>8</sup> In the latter cases the formation of a configurationally stable key allenylzinc intermediate 7 takes place with net inversion of configuration from precursor propargylic mesylates. Carbonyl addition then proceeds through a chelated cyclic transition state 9 (Scheme 2).<sup>8</sup> A similar arrangement, i.e 17, in our cyclizations would lead to a product with a cis relationship between the alkynyl and OH groups. However, the major diastereoisomer formed displayed instead a trans relationship between those groups implying that open transition states 18 are probably involved in the formation of 16. One reasonable explanation for this behavior is that coordination of the carbonyl group to the strong Lewis acid Yb(OTf)<sub>3</sub><sup>10</sup> is the stereocontrolling factor<sup>11,12</sup> in our reactions.



In conclusion, propargylic esters with a tethered carbonyl group are prepared in few steps from carbohydrate precursors. These esters react with  $Et_2Zn$  and catalytic Pd(0) in the presence of a Lewis acid to generate nucleophilic allenyl metal species that undergo intramolecular carbonyl addition to afford enantiomerically pure, densely functionalized cyclopentanes with high diastereoselectivity.

## Acknowledgement

Financial support by the Universidad del País Vasco (170.310-EB001/99) and Ministerio de Ciencia y Tecnología (DGI BQU2000-01354) is gratefully acknowledged. We also thank the Ministerio de Educación y Cultura for a Fellowship to M. A.

## **References and Notes**

- Recent reviews: (a) Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779. (b) López, J. C.; Fraser-Reid, B. Chem. Commun. 1997, 2251. (c) Tatsuta, K. J. Synth. Org. Chem., Japan 1997, 55, 970. (d) Martínez-Grau, A.; Marco-Contelles, J. Chem. Soc. Rev. 1998, 27, 155. (e) Fraser-Reid, B.; Burgey, C. S.; Vollerthun, R. Pure Appl. Chem. 1998, 70, 285. (f) Marco-Contelles, J.; Alhambra, C.; Martínez-Grau, A. Synlett 1998, 693. (g) Jiang, S.; Singh, G. Tetrahedron 1998, 54, 4697. (h) Dalko, P. I.; Sinaÿ, P. Angew. Chem. Int. Ed. 1999, 38, 773. (i) Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779. (j) Hollingsworth, R. I.; Wang, G. Chem. Rev. 2000, 100, 4267.
- (2) Aurrecoechea, J. M.; Lopez, B.; Arrate, M. J. Org. Chem. 2000, 65, 6493.
- (3) Aurrecoechea, J. M.; Fañanás, R.; Arrate, M.; Gorgojo, J. M.; Aurrekoetxea, N. J. Org. Chem. 1999, 64, 1893.
- (4) For a review, see: Marshall, J. A. Chem. Rev. 2000, 100, 3163.
- (5) (a) Buchanan, J. G.; Dunn, A. D.; Edgar, A. R. J. Chem. Soc., Perkin Trans. 1 1975, 1191. (b) Gómez, A. M.; Danelon, G. O.; Moreno, E.; Valverde, S.; López, J. C. Chem. Commun. 1999, 175. (c) Seepersaud, M.; Al-Abed, Y. Tetrahedron Lett. 2000, 41, 7801.
- (6) Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 53, 1135.
- (7) Under appropriate conditions all four isomers of 16 could be obtained and were readily separated by liquid chromatography. This facilitated the stereochemical assignments, as useful comparisons could be made between the observed NOE's of the individual isomers.
- (8) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1999, 64, 5201.
- (9) Experimental procedure: To a solution of Pd(OAc)<sub>2</sub>•4PBu<sub>3</sub> (0.05 mmol) and **15** (1.0 mmol) in dry THF (10 mL) under Ar were successively added Yb(OTf)<sub>3</sub> (744 mg, 1.2 mmol) and Et<sub>2</sub>Zn (1.0 M in hexanes, 3.0 mL, 3.0 mmol). The mixture was stirred at r.t. (**15a**) or 50 °C (bath temperature, **15b**) until consumption of the substrate (TLC). The mixture was diluted with EtOAc (40 mL) and washed successively with 1 M HCI (20 mL), saturated NaHCO<sub>3</sub> (20 mL), and brine (20 mL). The crude product was purified by liquid chromatography on silica

gel to afford cyclopentanes **16**. Data for **16a**:  $[\alpha]_D^{20}$  -32.0° (c 0.01, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz) δ 1.38 (s, 3H), 2.31 (d, J = 2.4 Hz, 1H), 2.98-3.03 (m, 1H), 3.05 (s, 1H), 3.55 (d, J = 2.2 Hz, 1H), 3.91-3.95 (m, 2H), 4.51 (s, 2H), 4.56 (d, *J* = 11.6 Hz, 1H), 4.63 (d, *J* = 11.8 Hz, 1H), 4.69 (d, *J* = 11.6 Hz, 1H), 4.83 (d, J = 11.8 Hz, 1H), 7.30-7.38 (m, 15H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.9 MHz) δ 22.3, 45.5, 71.9, 72.1, 73.0, 77.1, 82.4, 85.6, 86.5, 86.6, 127.7, 127.9, 128.0, 128.3, 128.4, 128.5, 137.3, 137.7, 137.8; IR (neat) v 3680-3400, 3360, 2215  $cm^{-1}$ ; HRMS calcd for  $C_{29}H_{30}O_2$  442.2144, found 442.2158. Data for **16b**:  $[\alpha]_D^{20}$ +21.9° (*c* 0.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz) δ 1.36 (s, 3H), 2.57 (td, *J* = 7.2, 2.4 Hz, 2H), 2.98 (m, 1H), 3.02 (s, 1H), 3.55 (d, J = 2.9 Hz, 1H), 3.62 (t, J = 7.1 Hz, 2H), 3.76-3.96 (m, 2H), 4.52-4.59 (m, 5H), 4.63 (d, *J* = 11.9 Hz, 1H), 4.70 (d, *J* = 11.5 Hz, 1H), 4.83 (d, *J* = 11.9 Hz, 1H), 7.28-7.36 (m, 20H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.9 MHz) δ 20.3, 22.5, 45.7, 68.6, 71.7, 71.9, 72.0, 72.8, 77.5, 79.2, 81.5, 85.6, 86.5, 86.7, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 137.4, 137.8, 137.9, 138.0; IR (neat) v 3600-3300, 3000-2850 cm<sup>-1</sup>; HRMS calcd for  $C_{38}H_{40}O_5$ 576.2876, found 576.2851.

- (10) Kobayashi, S. Synlett 1994, 689.
- (11) Kadota, I.; Hatakeyama, D.; Seki, K.; Yamamoto, Y. *Tetrahedron Lett.* **1996**, *37*, 3059.
- (12) It is important to note that substrates **15** were obtained and used as approximately 3:1 diastereomeric mixtures at the propargylic position. Therefore, from the results presented in Scheme 4, the conclussion could be drawn that the major product **16** originates in the major diastereoisomer of **15** and that this one has an (*S*) configuration at the propargylic center. The implicit assumption is that, under the reaction conditions, little stereochemical scrambling takes place at the allenyl metal moiety of species **2** and **3**.<sup>13,14</sup>
- (13) Marshall, J. A.; Chobanian, H. R. J. Org. Chem. 2000, 65, 8357.
- (14) Poisson, J. F.; Chemla, F.; Normant, J. F. Synlett 2001, 305.

## Article Identifier:

1437-2096,E;2001,0,06,0872,0874,ftx,en;D08301ST.pdf