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A Stepwise 1,3-Dipolar Cycloaddition Reaction’ 

Sir: 
Substituted 2H-azirines undergo photochemical ring 

opening to form nitrile y l i d e ~ . ~ . ~  These 1,3-dipoles can be 
intercepted with a variety of dipolarophiles to produce five- 
membered heterocyclic  ring^.^,^ Salem has recently carried 
out some a b  initio computations on the ground and excited 
state energy surfaces of the 2H-azirine m ~ l e c u l e . ~  His cal- 
culations indicate that the ring-opened intermediate should 
be capable of dual reactivity when it is intercepted by a n  
added dipolarophile. The behavior of the system was pre- 
dicted to be dependent on the geometry of the transient in- 
termediate generated from the photolysis. Opening of the 
ring to an intermediate with linear geometry will result in 
the formation of a 1,3-dipolar like species having closed- 
shell zwitterionic character. All of the photocycloadditions 
observed to date are  in accord with such a  specie^.^,^ Sal- 
em’s calculations also indicate that if the ring is opened to 
give an intermediate with bent geometry, a diradical state 
with partial dipolar character will be obtained. We now 
wish to report evidence which corroborates Salem’s calcula- 
tions and which also provides the first example of a stepwise 
1,3-dipolar cycloaddition r e a ~ t i o n . ~  

W e  recently reported that the irradiation of 2-phenyl-3- 
methyl-3-allylazirine (1) produced 2-azabicyclo[3.1 .O] hex- 
2-ene (4) via an unusual 1,1 -cycloaddition reaction6 
(Scheme I).  In order to probe the generality of this internal 
cycloaddition reaction, we have examined the photochemi- 
cal behavior of the isomeric 2-methyl-3-phenyl-3-allylazir- 
ine (2) system.’ Irradiation of 2 in cyclohexane afforded a 
quantitative yield of azabicyclohexene (4). A control exper- 
iment showed that 1 and 2 were not interconverted by a 
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Cope reaction under the photolytic conditions. Photolysis of 
2 in the presence of the very reactive dipolarophile, methyl 
trifluoroacetate,s resulted in the trapping of a nitrile ylide 
and gave cycloadduct 6 in high yield.g Under these condi- 
tions, the formation of 4, which is produced in quantitative 
yield in the absence of a trapping agent, is entirely sup- 
pressed. Photocycloaddition of 1 with added methyl trifluo- 
roacetate resulted in the formation‘ of cycloadduct 5 in high 
yield.I0 The  isolation of 6 in the ixternal trapping experi- 
ment eliminates a path by which 2 is partially isomerized to 
1 which then rearranges to 4 on further excitation. This 
possibility was initially considered to be a reasonable one 
since the extinction coefficient of 1 a t  254 nm ( E  8700) is 
much larger than that of 2 ( t  220). W e  have also found that 
the short term irradiation of 1 (20% conversion) produces a 
1:l mixture of azabicyclohexenes 3 and 4.11 On further ir- 
radiation, 3 was quantitatively isomerized to 4. No signifi- 
cant quantities of 3 were found in the irradiation of 2, how- 
ever. This is probably related to the fact that 3 possesses a 
much larger extinction coefficient than 2 and is optically 
pumped to 4, even at  low conversions. 

Support for this contention was obtained from a study of 
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the  photobehavior of azirines 7 and 8 (Scheme 11). Irradia- 
tion of 7 in cyclohexane for short periods of time (40% con- 
version) produced a mixture (4: l )  of azabicyclohexenes 13 
and 14 in quantitative yield.12 A short term photolysis (40% 
conversion) of the isomeric 2-methylazirine system (8) af- 
forded the same two photoproducts (Le., 13 and 14). O n  
further irradiation, 14 was converted into 13. When E-2- 
methyl-3-phenyl-3-(2-butenyl)azirine (10) was irradiated 
in cyclohexane (100% conversion), a mixture of the endo 
(25%) and exo (75%) isomers of 1 -phenyl-3,4-dimethyl-2- 
azabicyclo[3.1 .O]hex-2-ene (15) were the only products 
formed. This same epimeric mixture of isomers was pro- 
duced from azirine 9. W e  previously reported that the pho- 
tolysis of azirine 11 gave azabicyclohexene 16.6 The forma- 
tion of the thermodynamically less favored endo isomer 
from the trans olefin corresponds to a complete inversion of 
stereochemistry about the C-C double bond in the cycload- 
dition process. W e  now find that the thermodynamically 
less favored endo isomer (16) is also formed from the irra- 
diation of azirine lLi3 

The most reasonable explanation to account for the ob- 
served cycloadditions involves a bent nitrile ylide intermedi- 
a te  (carbene-like) (Scheme 111). Attack of the carbene car- 
bon on the terminal position of the neighboring double bond 
will generate a six-membered ring dipole which contains a 
secondary carbonium ion as  well as an aza-allyl anion por- 
tion. Collapse of this new 1,3-dipole will result in the forma- 
tion of the observed azabicyclohexene system. The  photo- 
conversion of the azabicyclohexenes (i.e., 14 -, 13) can also 
be rationalized in terms of a six-membered ring dipole. 

All of the 1,3-dipolar cycloadditions which have been 
subjected to mechanistic scrutiny follow concerted path- 
ways as  measured by the criteria of stereochemistry, solvent 
effects, and isotope effects.I4 Huisgen has suggested that 
these concerted 1,3-dipolar additions proceed via a “two- 
plane” orientation complex in which the dipole and dipolar- 
ophile approach each other in parallel planes.I5 A symme- 
try-energy correlation diagram reveals that  such a cycload- 
dition is a n  allowed process.l6 With the above allylazirines, 
however, the normal “two-plane’’ orientation approach of 
the linear nitrile ylide and the allyl a-system is impossible 
as  a result of the geometric restrictions imposed on the sys- 
tem. Product formation is possible if the linear nitrile ylide 
undergoes rehybridization to  give a species of bent geome- 
try. Once this occurs, the cycloaddition reaction is no longer 
concerted and instead proceeds by a stepwise-diradical (or 
zwitterionic) intermediate.” 

Further evidence for the involvement of two different 
geometric forms of a nitrile ylide was obtained from com- 
petitive rate studies. Linear nitrile ylides react preferential- 

ly with electron-deficient alkenes, since such a pair of ad- 
dends possesses a narrow dipole-HOMO dipolarophile- 
L U M O  gap.I8 This is the case when the above allyl substi- 
tuted azirines undergo cycloaddition with external dipolaro- 
philes. Thus, fumaronitrile undergoes cycloaddition a t  a 
much faster rate (ca. 189000) than methyl crotonate and 
aliphatic olefins were found to be ineffective dipolarophiles. 
A study of the quantum yield for azabicyclohexene forma- 
tion as a function of added dipolarophile shows, however, 
that the internal photocyclization of the allyl azirine system 
occurs readily with these aliphatic substituted 01efins.l~ 
This is consistent with the bent nitrile ylide form since car- 
benes a re  known to react rapidly with electron-rich double 
bonds.20 

W e  are  continuing to  explore the scope and mechanistic 
features of this novel cycloaddition reaction and will report 
additional findings a t  a later date. 
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Preparation and Reactions of 
2-(Alkoxy)-l-(alkyl or arylthio)vinyllithium. Application 
in the Synthesis of 9-Desoxo-9-thiaprostaglandins 

Sir: 

The reaction of a cis-trans mixture of 2-(ethoxy)-1- 
(pentyl or pheny1thio)ethylenes ( la ,b) '  with tert-butyllithi- 
um in T H F  at  -70" for 1 h results in essentially quantita- 

tive formation of the 2-(ethoxy)-1-(pentyl or phenylthio)- 
vinyllithium (2a,b). Although, under similar conditions, 
vinyl sulfides2 and vinyl ethers3 are  converted to the corre- 
sponding 1 -vinyllithium derivatives in high yields, the lith- 
iation of la,b occurs regioselectively a t  C1. Evidence for the 
regioselective lithiation is provided by the reactions of the 
anion 2 with electrophiles (E+) to produce exclusively prod- 
ucts such as 34 (Table I). Alternatively, the anion 2a is pre- 
pared quantitatively by treatment of l-(bromo)-2-(ethoxy)- 
1 -(phenylthio)ethylene (4)5 with n-butyllithium (1 equiv) 
in ether6 a t  -70" for 0.5 h.' 

RSCH=CHOEt RSC=CHOEt YE PhsTBr I OEt OEt Li 
1 2 3 4 

a, R=Ph b, R=n-CjH,,  

At  -70°,  the anion 2 reacts smoothly with aldehydes and 
ketones to produce the allylic alcohols 58 in excellent yields 
(Scheme I ) .  Under acidic (aqueous HCI, T H F ,  5 min, 0") 
or weakly basic (SOCl2-pyridine, ether-hexane, -20") 
conditions, these substances undergo facile rearrangements9 
to produce a-mercapto-a$-unsaturated aldehydes 8 (Y = 

Scheme I 

5 

"I*: H - 
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Table I.  Reaction of 2-(Ethoxy)-I-(pentyl or pheny1thio)vinyllithium with Electrophiles 

RSF,H - R S y y " '  

OEt Y OAc 
6 9 

R'X 4 

OEt Y 
7 10 

Y=CHO or CH(OEt), 

RSCH=CHOEt Adduct (yield %)a Rearrangement or solvolysis producte 
R Electrophile R R'  R R'  

Ph Benzaldehyde 5 Ph Ph ( 7 5 ) C . i  
n-C5H1 1 Benzaldehyde 5 n-C,H,, Ph (8O)C. i  

Ph Cyclopentanone 

8 Ph Phf 
8 n-CsH1, Phf 

phsm 
OEt Y 

Ph Cro tonaldehyde 5 Ph -CH=CHCH, (78)bsc 8 Ph -CH=CHCH$j 
Ph Heptanal 5 Ph n-C6Hl, ( 8 4 ) C j J  8 Ph n C 6 H  $R,i 
n - C J 1 ,  Heptanal 5 n-C5HIl n-C6Hl, (82)brc 8 n-C5Hll n C 6 H  I Bf 
Ph Ethylene oxide 6 Ph H ( 6 0 ) C J  9 Ph Hh,i 
Ph Propylene oxide 6 Ph CH, ( 5 5 I d , j  
Ph 1 -1odobutane 7 Ph n-C,H, (55)dtj 
nGH11 1-Bromobutane 7 n-C5HlI n-C,H, (42)d,i 10 n C 5 H l l  n-C,H,h 
n-C5H11 1-Iodobutane 7 n-C5H,, n-C,H, (60)d 

a Unless otherwise indicated the yields were based on  products isolated by preparative TLC. b The yields were determined by spectral data 
of the crude products. These adducts were subjected to rearrangement reactions without purification. C Reaction in THF. d Reaction in THF/ 
HMPA. e Unless otherwise indicated, all rearrangements and solvolyses proceeded in 85-90% yields. f Rearrangement with 1 N aqueous HC1 
in THF at 0" for Y = CHO and with p-TsOH in ethanol at 0" for Y = CH(OEt),. g Rearrangement with SOC1, and pyridine in ether-hexane 
at -20" for Y = CHO. Solvolysis with aqueous AcOH at 50" for Y = CHO and with p-TsOH in ethanol for Y = CH(OEt),. i Solvolysis pro- 
ceeded in 40-50% yield. I Reference 17. 
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