708 Communications SYNTHESIS

If an additional solvent is used, e.g., chloroform, which keeps the phosphonium salt (2) dissolved, the above stoichiometry (Scheme A) has to be considered even with open chain diketones.

Attempts to convert β -keto-aldehydes (2-formylcyclohexanone, benzoylacetaldehyde, p-bromobenzoylacetaldehyde) into the corresponding β -halovinyl ketones were unsuccesful. Under the conditions of the general procedure given below we obtained only resinous material.

Table. Reaction of β -Diketones with Triphenylphosphine and Carbon Tetrahalide

Diketone	Product	X	Yield (%)	b.p./torr
ОН	o x	Cl	85	74 7 6°/12
ОН	ů,	Cl	81	83-85°/7
ОН	, x	Cl Br	82 85	9294°/14 5355°/1
OH CN	O CN	Cl	79	126-127°/0.5
Он	Å,	Cl Br	73 75	34-35°/1.5 69-70°/10
0 OH	ů, x	Cl	81	44-45°/23

Convenient Preparation of β -Halovinyl Ketones under Non-Acidic Conditions

L. Gruber, I. Tömösközi, L. Radics

Central Research Institute for Chemistry, the Hungarian Academy of Sciences, Budapest, 1025, Hungary

Triphenylphosphine in carbon tetrachloride represents a useful reagent¹ for the exchange of a hydroxy group with a chlorine atom². Acid sensitive groups, such as acetals, etc. remain unaffected by this reagent³ as a consequence of the essentially neutral conditions maintained throughout the reaction⁴.

We have found that triphenylphosphine and carbon tetrahalides (chloride or bromide) can be used advantageously for the conversion of 1,3-diketones into β -halo- α , β -unsaturated ketones including even open chain species. In various procedures hitherto reported⁵ the formation of hydrogen halide is involved and thus the preservation of acid sensitive groups is not possible. The resistence of acetals towards this reagent³ is reflected by quantitative recovery of either 2,2-dimethoxy-propane or 2,2-dimethyl-1,3-dioxolane added to the reaction mixture of triphenylphosphine, carbon tetrachloride, and 5,5-dimethylcyclohexan-1,3-dione.

The stoichiometry of the reaction can be generally expressed by the following equation⁴ (Scheme A).

$$2 \longrightarrow OH + 3(C_6H_5)_3P + CX_4 \longrightarrow 2 \longrightarrow X$$

$$+ 2(C_6H_5)_3PO + \left[(C_6H_5)_3PCH_2X\right]^{\oplus} \times^{6}$$
Scheme A 1

In the case of open chain compounds, a different stoichiometry is valid provided that carbon tetrachloride is used as solvent (Scheme B).

Scheme B

General Procedure for the Preparation of Chlorides:

Stoichiometric amounts of triphenylphosphine and the diketone were dissolved (or suspended) in dry carbon tetrachloride (1.5 ml per g of phosphine) and heated at 50–55° with stirring. In about 15 min the mixture became turbid and the salt 1 began to separate in crystalline form. The reaction was complete in 3–4 hours. The phosphonium salt 1 (80–97%) was filtered off and the carbon tetrachloride removed on a rotatory evaporator, leaving a semi-crystalline residue which was triturated with pentane. Insoluble triphenylphosphine oxide (90–100%) was filtered off and the solvent evaporated to give the crude product (90–100%) which, after fractionation, afforded analytically pure material.

General Procedure for the Preparation of Bromides:

To the solution or suspension of diketone (2 mol-equiv) and triphenylphosphine (3 mol-equiv) in chloroform (1.5 ml per g of phosphine) stirred at 45°, a solution of carbon tetrabromide (1 mol-equiv) in chloroform (1 ml per g) was added. After 3 hours the chloroform was removed by rotary evaporation and the residue extracted with pentane followed by work up as described above.

Received: August 8, 1975

L. F. Fieser, M. Fieser, Reagents for Organic Synthesis, Vol. 1, Wiley, New York, 1968, p. 1247.

² J. B. Lee, T. J. Nolan, Tetrahedron 23, 2789 (1967).

³ J. B. Lee, T. J. Nolan, Can. J. Chem. 44, 1331 (1966).

⁴ I. Tömösközi, L. Gruber, L. Radics, Tetrahedron Lett. 1975, 2473

⁵ R. D. Clark, C. H. Heathcock, Synthesis 1974, 47.