Received: 11 November 2009,

Revised: 8 March 2010,

(wileyonlinelibrary.com) DOI 10.1002/poc.1718

Published online in Wiley Online Library: 8 July 2010

Substituent effect investigation of 3-(2, 4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-one. Part 1. Correlation analysis of ¹³C NMR chemical shifts[†]

A. Perjéssy^a, H. K. Al-Amood^b, G. F. Fadhil^b* and N. Prónayová^c

A series of substituted chlorinated chalcones namely, 3-(2,4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-one, have been synthesized, X being H, NH₂, OMe, Me, F, Cl, CO₂Et, CN, and NO₂. Dual substituent parameter (DSP) models of ¹³C NMR chemical shift (CS) have revealed that π -polarization concept could be utilized to explain the reverse field effect at CO, the enhanced substituent field effect at CO, C-2, and C-5, and the decreased sensitivity of substituent field effect at C-6. Chlorine atoms dipole direction at the benzylidene ring either enhances or reduces substituent field effect depending on how they couple with the substituent dipole at the probe site. The correlation of ¹³C NMR CS of C-2, C-5, and C-6 with σ_P^+ and σ_R^+ indicates that chlorine atoms in the benzylidine ring deplete the ring from charges. Both MSP of Hammett and DSP of Taft ¹³C NMR CS models give similar trends of substituent effects at C-2, C-5, and C-6. However, the former fail to give a significant correlation for CO and C-6 ¹³C NMR CS. MSP of σ_q and DSP of Taft and Reynolds models significantly correlated ¹³C NMR CS of C_β. MSP of σ_q fails to correlate C-1' ¹³C NMR CS. Investigation of ¹³C NMR CS of non-chlorinated chalcones series: 3-phenyl-1-(4'-X-phenyl)-2-propen-1-one has revealed similar trends of substituent effects as in the chlorinated chalcones series for C-1', CO, C_α, and C_β. In contrast, the substituent effect of the non-chlorinated chalcone series at C-2, C-5, and C-6 did not correlate with any substituent constant. Copyright © 2010 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this paper.

Keywords: ¹³C NMR chemical shifts; chalcones; correlation analysis; substituent effect

INTRODUCTION

Chalcones have shown immense chemical and biological applications such as antimalarial,^[1] antiplasmodial,^[2] anti-HIV,^[3–5] anti-cancer,^[6,7] and anti-bacterial.^[8] Also, chalcones have been objects of a number of theoretical^[9,10] and experimental^[11,12] structural investigations. Earlier studies on the transmission of substituent effects on substituted chalcones namely 3-phenyl-1-(4'-X-phenyl)-2-propen-1-ones, 3-(4-X-phenyl)-1-(phenyl)-2-propen-1-ones,^[13,14] and *trans*-1-phenyl-3-(5-aryl-2-furyl) propenones and trans-1-phenyl-3-(5-aryl-2-thienyl) propenones^[15] have revealed the electronic nature of substituent effect. These conclusions were based on the correlation of the ¹³C NMR CS or carbonyl stretching frequencies as represented by P_x for compound with X being the substituent and σ being the Hammett substituent constant. Equation (1) represents the mono substituent parameter model (MSP). There has been some dispute about using the MSP over the dual substituent parameter model (DSP). The former model is simple and gives one weighting factor to interpret the transmission of substituent effect. However, the failure of the MSP in certain cases has encouraged researchers to use the DSP (Eqn 2), which uses $\sigma_{\rm R}$ and $\sigma_{\rm F}$ substituent resonance and field constants, respectively. Nevertheless, in certain cases the MSP provides better modeling results than the DSP.

$$\mathsf{P}_{\mathsf{x}} = \rho \ \sigma + c \tag{1}$$

$$\mathsf{P}_{\mathsf{x}} = \rho_{\mathsf{R}}\,\sigma_{\mathsf{R}} + \rho_{\mathsf{F}}\sigma_{\mathsf{F}} + c \tag{2}$$

where ρ , $\rho_{\rm Rr}$ and $\rho_{\rm F}$ are the weighting factors of electronic, resonance, and field substituent effects, respectively, with *c* being the intercept in each model. These models have demonstrated the versatility of both the MSP and DSP in interpreting the mode of transmission of substituent electronic, resonance, and field effects.

Sotomatsu *et al.*^[16] found a significant correlation between Hammett's substituent constant and the sum of Mulliken charges of the carboxyl group of various *para* and *meta* substituted benzoic acids calculated by semi-empirical AM1 method. Saleh^[17] defined σ_q constant from the sum of calculated Mulliken

- b H. K. Al-Amood, G. F. Fadhil Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
- c N. Prónayová Department of NMR MS, Institute of Analytical Chemistry, Slovak University of

Technology, Bratislava, Slovak Republic

[†] In Memoriam the late professor Alexander Perjéssy

Correspondence to: G. F. Fadhil, Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq. E-mail: ghazwan_fadhil@yahoo.co.uk

a A. Perjéssy Institute of Chemistry, Comenius University, SK-84215 Bratislava, Slovak Republic

charges^[16] of the carboxyl group atoms in *para* or *meta* substituted benzoic acid.

In recent substituent effect studies on ¹³C NMR CSs and carbonyl stretching frequencies in *E*-2-(X-benzylidene)-1-indanones, *E*-2-(X-benzylidene)-1-tetralone, and *E*-2-(X-benzylidene)-1-benzosuberones,^[18,19] each structure contains the α , β -unsaturated ketone functionality. This makes the molecular framework similar to chalcones. It has been concluded^[18,19] that the carbon atom α of the side chain, which is next to carbon *para* of the substituted benzene ring, is less sensitive to substituent effect than the β -carbon. However, there was little elaboration on the origins of the field effects in terms of π -polarization.

The π -polarization concept was proposed originally by Hamer et al.^[20,21] and later was used extensively by Bromilow et al.^[22] and Brownlee et al.^[23,24] to rationalize substituent field effect at the side chain of para and/or meta substituted benzenes. It was also successfully applied to interpret the transmission of substituent effects within 5-substituted indole -2, 3-diones.^[25] The π -polarization concept was recently used successfully to interpret the Yukawa–Tsuno model of ¹³C NMR CS of β -carbon of the vinyl group in para substituted styrenes with varying electronic demands at β -carbon.^[26] Hence, applying MSP and DSP models to ¹³C NMR CS and then interpreting the obtained ρ of MSP and $\rho_{\rm B}$ and $\rho_{\rm F}$ of DSP – in terms of the electronic effects or resonance and field effects of substituent with the aid of the π -polarization concept – would be a worthwhile analysis to rationalize the mode of transmission of substituent effects through aromatic molecules. Previous structural investigations have not covered chalcones with a chlorinated benzylidine ring.^[13–15] These chlorine atoms may alter the substituent effect felt at the benzylidine ring. Hence, the aim of this work is to investigate the mode of transmission of substituent effect and test the quality of MSP and DSP models in modeling ¹³C NMR CS in 3-(2,4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-ones (Structure 1).

 $X = HNH_2$ OMe Me FC CO₂Et CN NO₂

EXPERIMENTAL SECTION

General procedures

Melting points were uncorrected and measured by using Gallenkamp melting point apparatus. Proton NMR spectra were recorded on a Varian VXR 300 NMR spectrometer (299.943 MHz) in CDCl₃ at 25 °C with a concentration of 0.02 ml⁻¹. ¹³C NMR spectra were recorded on the same spectrometer at (75.429 MHz) in CDCl₃ solvent at 25 °C and referenced with respect to TMS in ppm. The Proton decoupling technique was used to aid the ¹³C assignment. A concentrated solution in CDCl₃ was used. For compounds with X as NH₂, a small amount of CD₃OD was added to increase its solubility in CDCl₃. The follow-up of reactions and sample purity were checked by TLC using Merck silica gel 60 F₂₅₄ aluminum sheets and were developed with the solvent mixture indicated in Table S1.

General procedure for the synthesis of 3-(2, 4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-one

Condensation of 2, 4-dichlorobenzaldehvde with 4-X-acetophenone was carried out to prepare the suitable 3-(2, 4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-one (Chalcone). However, two different procedures were employed according to the type of substituent, X, in the acetophenone. Chalcones with substituent X, namely H, NH₂, OMe and Me, were prepared according to the Claisen-Schmidt method^[27-29] with a slight modification to the concentration of the base in which 20% of NaOH was used for the preparation of chalcones with substituents H and OMe. Chalcones with substituent X, namely F, CN and NO₂, were prepared by passing HCl gas on ethanolic solution of the 2, 4-dichlorobenzaldehyde and para substituted acetophenone in (1:2) mole ratio, respectively.^[30] However, chalcone with substituent CO₂Et was prepared in situ by hydrolysis and then ethanolysis of the 3-(2, 4-dichlorophenyl)-1-(4'-cyano-phenyl)-2-propen-1-one. Products were recrystalized from ethanol. Table S1 gives the yields percentages, physical properties, uncorrected melting points and retention factors for the prepared compounds. CHN analysis is presented in Table S2.

Proton NMR assignments

Table S3 shows proton NMR spectra. Scheme 1 shows proton designation and carbon atom numbering. Protons on ring B showed an AMX pattern of splitting, while protons on ring A showed an AA'BB' pattern of splitting. The vinyl protons gave an AB pattern of splitting.

¹³C NMR spectra assignments

Table 1 presents the measured ¹³C NMR CS. The calculated ¹³C NMR CS are presented in parenthesis. Additivity rules of the software ChemBioDraw Ultra 11^[31] were used to calculate the expected ¹³C NMR chemical shifts. ¹³C NMR CS of the carbonyl, alpha, and beta were assigned according to Reference [14]. Calculated ¹³C NMR chemical shifts of ring B, CO, C_α, and C_β according to Reference [31] were insensitive to the variation of the substituents. They are given for the unsubstituted compound only; substituted compounds showed the same values of calculated ¹³C NMR CS. Difference in peak intensities of substituted and unsubstituted carbons aided in peak assignments.

COMPUTATIONS

Statistical calculations

A standard statistical package was used to calculate *r*, *R*, regression coefficient ρ s, and standard deviation (SD) of model fit. *f*-statistics^[32] was used to judge the quality of the constructed

Table 1. ¹³ C NMR CS in ppm of 3-(2, 4-dichlorophenyl)-1-(4'-X-phenyl)-2-propen-1-one								
х	C-α	C-β	C-1	C-2	C-3	C-4	C-5	C-6
н	125.01	139.31	131.85	136.07	130.14	136.47	127.56	128.50
	(124.3)	(145.1)	(131.1)	(136.0)	(128.9)	(125.2)	(126.8)	(130.3)
NH ₂	124.74	138.05	131.85	135.69	129.83	136.02	127.34	128.33
OCH₃	125.48	138.44	132.07	135.92	130.05	136.18	127.48	128.44
CH₃	125.04	138.88	131.96	136.00	130.09	136.31	127.51	128.46
F	124.54	139.55	131.70	136.10	130.17	136.59	127.58	128.49
Cl	124.39	139.79	131.62	136.03	130.18	136.14	127.59	128.49
CO ₂ Et	124.76	140.45	131.56	136.22	130.21	136.81	127.63	128.53
NO ₂	124.06	141.13	131.14	136.31	130.26	137.18	127.67	128.53
Х	CO	C-1′		C-2′,6′	C-3′,5′	C-4′	Others	
н	190.07	137.77		128.71	128.60	133.08		
	(189.7)	(137.9)		(128.5)	(129.2)	(134.5)		
NH ₂	188.20	128.83		131.05	115.35	149.28		
_		(127.9)		(132.0)	(114.7)	(154.2)		
OCH₃	188.20	130.63		130.92	113.90	163.60	55.50 (OC	CH ₃) (55.80)
		(130.2)		(130.9)	(114.8)	(166.4)		
CH₃	189.55	135.15		128.75	129.40	144.00	21.71(CH	3) (21.3)
-		(134.9)		(128.8)	(129.5)	(144.2)		
F	188.43	134.09		131.16	115.87	165.74		
		(133.5)		(131.5)	(116.0)	(168.7)		
CI	188.76	136.67		130.00	129.04	139.55		
		(136.0)		(130.3)	(129.3)	(140.1)		
CO ₂ Et	189.78	141.04		128.45	129.86	134.15	13.30 (14	.1)(CH₃)
		(142.2)		(129.8)	(130.4)	(135.9)	61.51(60.9	9) (OCH ₂)
							165.74 (1	65.9)(CO)
NO ₂	188.63	142.46		129.48	123.88	150.14		
_		(144.0)		(130.8)	(124.4)	(153.7)		
$^{1}J(^{13}C,^{19}F) =$	$^{1}J(^{13}C,^{19}F) = 255.18$ Hz, $^{\text{ortho}}J(^{13}C,^{19}F) = 22.1$ Hz, $^{\text{meta}}J(^{13}C,^{19}F) = 9.28$ Hz, and $^{\text{para}}J(^{13}C,^{19}F) = 2.87$ Hz. Bracketed values are calculated							
CS in ppm	CS in ppm.							

model, and were calculated by dividing the SD of the model over the root mean square error of data. The lower the *f*-statistics the better is the model. Excluded substituents in modeling due to lack of substituent constant are indicated at the bottom of Tables 2 and 3.

RESULTS AND DISCUSSION

Table 1 shows the variations of ¹³C NMR CS values when changing the substituent in structure 1. Tables 2 and 3 provide the results of modeling ¹³C NMR CS via the MSP and DSP models, respectively.

The MSP of σ_q and DSP models were equally significant in modeling ${}^{13}C_{\beta}$ NMR CS as indicated by *r*, *R*, and *f*-statistics. None of the MSP models provided significant correlation with ${}^{13}C$ -CO NMR CS. Hammett type σ_p^+ was better than σ_q in correlating ${}^{13}C$ NMR CS of C-1', C-2, C-5, and C-6 as concluded from the higher *r* and lower *f*-statistics values for Hammett's model. Similarly, Taft's DSP model selected σ_R^+ as the best substituent constant to correlate ${}^{13}C$ NMR CS of C-2, C-5, and C-6. The selection of σ_p^+ and σ_R^+ in MSP and DSP models, respectively, indicates that C-2, C-5, and C-6 may suffer a deficiency of charge. Hence, the failure of Reynolds' DSP model in correlating ${}^{13}C$ NMR CS of C-2, C-5, andC-6 can be understood since his model uses σ_R° as a substituent resonance constant. However, Reynolds' DSP model

correlated ^{13}C NMR CS of C-1' and C_{B} better than Taft's DSP model, which also uses $\sigma_{\rm B}^{\circ}$ as a substituent constant. In general, DSP models give better modeling quality than MSP models. $\rho_{\rm R}$ values for a given carbon responded in a similar fashion in both Reynolds' and Taft's DSP models as long as the latter uses of $\sigma_{\rm B}^{\circ}$ as the best substituent resonance parameter, and both models had a similar quality of significance as given by R values. This result can be ascribed to the nature of Reynolds' $\sigma_{\rm R}^{\circ}$. $\rho_{\rm R}$ in Reynolds' model for ¹³C-1' NMR CS is 4.77 times larger than $\rho_{\rm E}$ for the same atom. This implies more substituent resonance contribution in C-1' than field effect. This behavior of C-1' was found previously in *para*-disubstituted benzenes.^[33] Taft's DSP model is superior in quality to Reynolds' DSP model in modeling ¹³C NMR CS of C-CO. The ¹³C NMR CS of C-CO behaves in a reverse manner to the substituent effect. This means the electron-withdrawing substituent causes an up-field shift to NMR chemical shifts of ¹³C-CO. Despite that, a positive value of $\rho_{\rm R}$ was observed in modeling ¹³C-CO NMR CS by Reynolds' and Taft's DSP models with $\sigma_{\rm R}^+$ being the best substituent resonance constant in the latter model. It has been observed^[34] that ¹³C-CO NMR CS of acetophenone responds normally to substituent resonance effect with $\rho_{\rm B}$ being positive. The ¹³C-CO NMR CS in the current study behaves in a similar fashion to that of acetophenone. However, for para substituted benzoate the ¹³C-CO NMR CS gives a

Table 2. Results of ¹³ C NMR CS MSP modeling of chlorinated chalcones							
	Hammett's Model ^a						
	Substituent						
C-atom	constant	C	ρ	r	t-statistics		
C-1′	$\sigma^+_{\sf p}$	136.59 ± 0.45	$\textbf{6.86} \pm \textbf{0.72}$	0.968	0.26		
СО	σ_{p}^{+}	189.01 ± 0.25	$\textbf{0.53} \pm \textbf{0.39}$	0.478	0.54		
C-β	$\sigma_{\rm p}^{\rm BA}$	139.46 ± 0.14	2.12 ± 0.33	0.930	0.41		
C-2	$\sigma_{\rm p}^+$	136.07 ± 0.02	$\textbf{0.28} \pm \textbf{0.03}$	0.972	0.27		
C-5	σ_{p}^{P}	127.56 ± 0.01	$\textbf{0.15} \pm \textbf{0.01}$	0.972	0.27		
C-6	σ_{p}^{P}	128.48 ± 0.01	$\textbf{0.09} \pm \textbf{0.01}$	0.948	0.35		
	·						
	$\sigma_q \text{ Model}^b$						
C-atom	С	Ą)	r	f-statistics		
C-1′	250.99 ± 22.7	267.0 + 52.2		0.916	0.40		
СО	190.37 ± 8.9	3.50 -	± 20.4	0.077	0.56		
C-β	167.19 ± 1.7	64.20	± 3.9	0.991	0.15		
C-2	140.94 ± 0.8	11.30 -	± 1.8	0.942	0.36		
C-5	130.19 ± 0.5	6.13 -	± 1.2	0.914	0.45		
C-6	129.96 ± 0.4	3.46 -	± 1.0	0.837	0.59		
c is the intercept.							
^a CN was excluded.							
^D CO ₂ Et and CN were excluded.							

Table 3. Results of ¹³ C NMR CS DSP modeling of chlorinated chalcones								
_	Taft's Model							
C-atom	Substituent constant	с	$ ho_{\mathrm{l}}$	$ ho_{R}$	R	f-statistics		
C-1 ⁷ CO C-β C-2 C-5 C-6	$\sigma_{R}^{\circ} \sigma_{R}^{\circ} \sigma_{R}^{\circ} \sigma_{R}^{\circ} \sigma_{R}^{+} \sigma_{R}^{+} \sigma_{R}^{+}$	$137.15 \pm 0.46 \\ 189.88 \pm 0.14 \\ 139.26 \pm 0.07 \\ 136.06 \pm 0.03 \\ 127.55 \pm 0.01 \\ 128.48 \pm 0.02 \\ \end{array}$	$\begin{array}{c} 4.74 \pm 1.04 \\ -2.00 \pm 0.29 \\ 2.35 \pm 0.18 \\ 0.29 \pm 0.07 \\ 0.17 \pm 0.03 \\ 0.07 \pm 0.03 \end{array}$	$\begin{array}{c} 11.90 \pm 0.79 \\ 0.95 \pm 0.13 \\ 2.96 \pm 0.17 \\ 0.25 \pm 0.03 \\ 0.14 \pm 0.01 \\ 0.09 \pm 0.01 \end{array}$	0.991 0.976 0.995 0.981 0.991 0.965	0.15 0.13 0.12 0.24 0.17 0.30		
	K	ĸ Reynolds' Model ^a						
C-atom	с	$ ho_{F}$		$ ho_{R}$	R	f-statistics		
C-1 [′] CO C-β C-2 C-5 C-6	$\begin{array}{c} 137.63 \pm 0.29 \\ 189.97 \pm 0.20 \\ 139.25 \pm 0.08 \\ 136.05 \pm 0.06 \\ 127.54 \pm 0.04 \\ 128.48 \pm 0.03 \end{array}$	$3.88 \pm$ -2.23 ± 2.31 ± 0.29 ± 0.18 ± 0.08 ±	0.64 0.44 0.18 0.13 0.09 0.07	$\begin{array}{c} 18.50 \pm 0.70 \\ 2.59 \pm 0.48 \\ 3.04 \pm 0.19 \\ 0.63 \pm 0.14 \\ 0.32 \pm 0.09 \\ 0.21 \pm 0.08 \end{array}$	0.998 0.956 0.996 0.944 0.919 0.856	0.07 0.18 0.10 0.40 0.48 0.60		
<i>c</i> is the intercept ^a CN was exclude	t. ed.							

negative $\rho_{\rm R}.$ This phenomenon is called the reverse substituent resonance effect.

The π -polarization along the conjugated π -electron system was found to be under the influence of the substituent at the *para* substituted benzene ring A.^[20–24] The π -polarization concept assumes that each π -unit (a double or triple bond, carbonyl, nitrile, or aromatic system) is thought to be polarized separately, the polarization being induced by the substituent dipole in another part of the molecule. This type of π -polarization is called localized or direct π -polarization. The localized π -polarization can be transmitted through either the molecular framework or the solvent continuum. In localized π -polarizations, each π -unit in the side chain polarizes separately.

It has been claimed^[35] that in cases of acetophenones resonance, structure C of Scheme 2 is more important than the resonance structure B of Scheme 2. However, in the case of ethyl benzoates, the resonance structure B of Scheme 2 is more important than resonance structure C.

Structure 2.

Thus, in this study we may argue that resonance structure C is more important than structure B because $\rho_{\rm R}$ is positive. Nonetheless, both DSP models give a reverse substituent field effect i.e. negative values of $\rho_{\rm I}$ for the ¹³C-CO NMR CS. Taft's model

gives a $\rho_{\rm I}$ value almost twice $\rho_{\rm R}$ for ¹³C-CO NMR CS. Thus, the predominance in the ¹³C-CO NMR CS value is for the substituent field effect, explaining the reverse behavior of the ¹³C-CO NMR CS. The reverse substituent field effect (i.e. negative $\rho_{\rm I}$) can be rationalized as a result of the π -polarization of the molecular framework. Structure 2 depicts the π -polarization in the studied molecule. A partial negative charge appears at C-CO, reflecting the reverse nature of the substituent field effect felt at that carbon. However, the positive sign of $\rho_{\rm R}$ for ¹³C-CO NMR CS indicates a normal substituent effect as explained previously.^[35,36]

MSP and DSP models failed to correlate ${}^{13}C_{\alpha}$ NMR CS. This failure was observed with other chalcones;^[14] it might be related to the insensitivity of ${}^{13}C_{\alpha}$ NMR CS to the variation of substituents. In contrast, ${}^{13}C_{\beta}$ NMR CS showed a significant correlation in σ_{q} MSP model. DSP models for ${}^{13}C_{\beta}$ NMR CS generated more significant results than MSP models. Reynolds' DSP model was better than Taft's, but both indicated more substituent resonance effect than substituent field effect at C_{β} . However, the $\rho_{\rm R}/\rho_{\rm I}$ and $\rho_{\rm R}/\rho_{\rm F}$ of C-1' are much larger than at C_{β}. Structure C of Scheme 2 shows that C-1' is in through resonance, while C_{β} is not. The correlation of ¹³C_{β} NMR CS with σ_{R}° of Taft and σ_{R}° of Reynolds indicates that the substituent is not in direct resonance with C_{β} . $\sigma_{\rm p}^+$ of Hammett's MSP and $\sigma_{\rm R}^+$ of Taft's DSP significantly correlate ¹³C NMR CS of C-2, C-5, and C-6, while $\sigma_{\rm q}$ and Reynolds' DSP model fail to do so. The selection of $\sigma_{\rm p}^+$ in the MSP model and $\sigma_{\rm R}^+$ in the DSP model as the best substituent parameters may indicate an electron deficiency at C-2, C-5, and C-6. This could be attributed to the chlorine atoms in the benzylidene ring. The $\rho_{\rm R}$ $_{C-2/\rho_{R C-6}}$ being 2.77 and ρ_{C-2}/ρ_{C-6} being 3.11 are close results from using different models and confirm the increased substituent resonance effect sensitivity at C-2 over that of C-6, which can be ascribed to the chlorine atom at C-2. The chlorine atom depletes the C-2 from electrons and, hence, the ¹³C NMR CS of C-2 significantly correlates with $\sigma_{\rm p}^+$ and $\sigma_{\rm R}^+$ with ρ and $\rho_{\rm R}$, respectively, and is higher than that of C-6 which lacks a chlorine atom. The $\rho_{\rm R}$ $_{C-5}/\rho_{\rm R C-6}$ and $\rho_{\rm C-5}/\rho_{\rm C-6}$ were 1.56 and 1.67, respectively. This trend of $\rho_{\rm R\ C-5/}\rho_{\rm R\ C-6}$ and $\rho_{\rm C-5}/\rho_{\rm C-6}$ is similar to that observed in C-2 but to a lesser extent because of C-5 being indirectly connected to the chlorine atom as in C-2. The substituent field effect felt at C-2, C-5, and C-6 was normal, i.e. positive values of ρ_i or ρ_F with a rate of fall C-2 > C-5 > C-6. This trend of fall coincides with the rate of fall of $\rho_{\rm R}$ for the same atoms. Enhanced $\rho_{\rm F}$ and $\rho_{\rm R}$ values in Reynolds' DSP model were observed^[26] for ¹³C_{β} NMR CS of *para* substituted styrene when the C_{β} atom becomes bonded to a more electronegative atom or polarizable functional group.

Structure 2 shows the resultant dipole due to chlorine atoms at carbon atoms 2 and 4. The resultant dipole stabilizes the π -polarization at C-2 because of its proximity of partial positive charge and of the resultant chlorine dipole to the partial negative charge generated by the substituent field effect at C-2. However, when a positive charge due to the substituent field effect exists such as at C-5, a lower ρ_1 value is observed due to destabilization by similar charge repulsion. A lower ρ_1 value than that at C-2 is also observed when the resultant dipole is felt at C-6 in the opposite direction to the substituent field dipole.

The ρ_l/ρ_R for C-2 and C-5 was 1.16 and 1.21, respectively, while the ρ_l/ρ_R for C-6 was 0.78. These rates of fall indicate that ρ_l at C-6 is more sensitive to the destabilizing effect of the resultant dipole of the chlorines atoms C-2 and C-4 than ρ_R , which maintained a higher value than ρ_l .

Table 4. Results of ¹³ C NMR CS MSP modeling of non-chlorinated chalcones ^a							
	Hammett's Model						
C-atom	Substituent constant	с	ρ	r	f-statistics		
C-1′	σ_{p}^+	136.49 ± 0.39	$\textbf{7.73} \pm \textbf{0.80}$	0.974	0.26		
СО	$\sigma_{\rm p}^+$	188.88 ± 0.27	$\textbf{0.26} \pm \textbf{0.56}$	0.207	0.54		
C-β	$\sigma_{\rm p}^{\rm BA}$	144.75 ± 0.18	$\textbf{2.45}\pm\textbf{0.43}$	0.939	0.38		
C-2	$\sigma_{\rm p}^{\rm P}$	128.78 ± 0.05	0.17 ± 0.10	0.605	0.84		
C-5	$\sigma_{\rm p}^{\rm P}$	129.34 ± 0.29	-0.50 ± 0.59	0.352	0.86		
C-6	$\sigma_{\sf p}^{\sf F}$	128.78 ± 0.05	$\textbf{0.17}\pm\textbf{0.10}$	0.605	0.86		
		σ_{q} Model					
C-atom	с		ρ	r	f-statistics		
C-1′	253.48±27.21	270.0	0±63.33	0.886	0.53		
СО	188.22 ± 9.41	-1.60	0 ± 21.90	0.032	0.55		
C-β	179.72 ± 3.55	80.73	3 ± 8.25	0.975	0.23		
C-2	132.69 ± 1.18	9.06	5 ± 2.75	0.828	0.59		
C-5	127.51 ± 10.47	-4.15	5 ± 24.38	0.077	0.91		
C-6	132.69 ± 1.18	9.06 ± 2.75 0.828			0.59		
<i>c</i> is the intercept. ^a Substituent set: H, CH ₃ , OCH ₃ , F, Cl, CN and NO ₂ .							

Table 5. Results of ¹³ C NMR CS DSP modeling of non-chlorinated chalcones ^a								
			Taft's Model					
C-atom	Substituent constant	С	$ ho_{I}$	$ ho_{R}$	R	f-statistics		
C-1′	σ_{R}^{BA}	137.55 ± 0.43	$\textbf{4.85} \pm \textbf{0.92}$	12.98 ± 0.88	0.993	0.15		
СО	σ_{R}^+	189.77 ± 0.19	-1.85 ± 0.34	1.15 ± 0.22	0.962	0.17		
C-β	σ_{R}°	144.52 ± 0.08	$\textbf{2.66} \pm \textbf{0.17}$	3.19 ± 0.20	0.996	0.09		
C-2	$\sigma^+_{\sf R}$	128.66 ± 0.06	0.46 ± 0.13	$\textbf{0.05}\pm\textbf{0.09}$	0.877	0.57		
C-5	$\sigma^+_{\sf R}$	128.46 ± 0.38	1.43 ± 0.79	-1.27 ± 0.51	0.818	0.59		
C-6	σ_{R}^+	128.66 ± 0.06	$\textbf{0.46} \pm \textbf{0.13}$	$\textbf{0.05}\pm\textbf{0.09}$	0.877	0.57		
		Reynolds' Model						
C-atom	С	$ ho_{F}$	$ ho_{R}$	t	R	f-statistics		
C-1′	138.01 ± 0.31	138.01 ± 0.31 3.72 ± 0.64		18.59 ± 0.83		0.09		
со	$189.96 \pm 0.96 \qquad -2.15 \pm 0.30$		$\textbf{2.68} \pm \textbf{0.39}$		0.974	0.14		
C-β	$144.49 \pm 0.08 \qquad \qquad 2.72 \pm 0.16$		$\textbf{3.36}\pm\textbf{0.21}$		0.997	0.08		
C-2	$128.66 \pm 0.08 \qquad \qquad 0.45 \pm 0.16$		$\textbf{0.09}\pm\textbf{0.21}$		0.838	0.65		
C-5	$128.44 \pm 0.45 \qquad \qquad 1.54 \pm 0.94$		-2.76 ± 1.23		0.777	0.64		
C-6	128.66 ± 0.08	$\textbf{0.45}\pm\textbf{0.16}$	0.09 ± 0.21		0.838	0.65		
<i>c</i> is the intercept. ^a Substituent set: H, CH ₃ , OCH ₃ , F, Cl, CN, NO ₂ .								

145

In order to investigate the role of chlorine atoms in the side chain on the transmission of substituent effect, we have investigated the substituent effect on the previously measured^[14] ¹³C NMR CS in 3-phenyl-1-(4'-X-phenyl)-2-propen-1-one as chalcone with non-chlorinated side chain here upon called non-chlorinated chalcone series. Tables 4 and 5 give the MSP and DSP modeling results, respectively. The substituent effect trends for C-1', CO, C_β, and C_α in the non-chlorinated chalcone series are similar to the chlorinated chalcone series. Nevertheless, carbon atoms of the benzylidine ring B in the non-chlorinated chalcone series failed to correlate with any MSP or DSP model. This finding could be attributed to the generated dipole by the chlorine atoms bonded to carbon atom number 2 and 4 in the chlorinated series. This dipole makes the C-2 and C-4 more sensitive to respond to the substituent at *para* substituted benzene ring A.

CONCLUSION

The π -polarization concept analysis of carbonyl stretching and ¹³C NMR CS results have aided in explaining successfully the normal and reverse substituent field effect, $\rho_{\rm Fr}$ felt at several substituent sensitive sites. Chlorine atoms in the side chain not only play a significant role in sensitizing carbon atoms of the benzene ring which carries chlorine atoms to the substituent effect, but also the π -polarization and its induced dipoles direction of the remote chlorine atoms play a significant role in determining the substituent field effect felt at probe sites in the vicinity of the chlorine atoms, either enhancing the substituent field effect as in the case of C-2 and C-5 or retarding it as in C-6. The substituent resonance effect is less sensitive than the substituent field effect to the side chain chlorine atoms dipole, as can be inferred from the reverse behavior of $\rho_{\rm I}/\rho_{\rm B}$ for C-2 and C-5 from one side and that of C-6 from other side. The choice of certain substituent resonance constant than other helped in detecting that site which is being conjugated such as C-1', or non-conjugated as in C_{β} since the former selects σ_{R}^{+} , while the latter selects $\sigma_{\rm R}^{\circ}$. Both MSP and DSP models give conclusive results that the chlorine atoms deplete the benzene ring B from charge as can be inferred from the best selected substituent constant σ_p^+ and σ_R^+ for both models respectively. Trends and interpretation results of ¹³C NMR CS utilizing the MSP model agree with DSP results as long as $\rho_{\rm F}$ or $\rho_{\rm I}$ does not exceed the value of $\rho_{\rm R}$ as in the case of ¹³C NMR CS of CO. MSP which uses $\sigma_{\rm q}$ gives only one significant result for C_{β}^{13} C NMR CS indicating that this substituent constant is useful in the correlation of non-conjugated sites. Calculated ¹³C NMR CS by ChemBioDraw Ultra11 of side-chain carbon atoms CO, $C_{\alpha\prime}$, $C_{\beta\prime}$ and carbons of benzene ring B were insensitive to the variation of substituents.

REFERENCES

- B. Ngameni, J. Watchueng, F. F. Boyom, F. Keumedjio, B. T. Ngadjui, J. Gut, B. M. Abegaz, P. J. Rosenthal, ARKIVOC 2007, xiii, 116.
- [2] J. O. Midiwo, F. M. Omoto, A. Yenesew, H. M. Akala, J. Wangui, P. Liyala, P. Wasunna, N. C. Waters, ARKIVOC 2007, ix, 21.
- [3] J. C. Trivedi, J. B. Bariwal, K. D. Upadhyay, Y. T. Naliapara, S. K. Joshi, C. C. Pannecouque, E. De Clercq, A. K. Shah, *Tetrahedron Lett.* **2007**, *48*, 8472.
- [4] K. Nakagawa-Goto, K. Lee, Tetrahedron Lett. 2006, 47, 8263.
- [5] J. Deng, T. Sanchez, L. Q. Al-Mawsawi, R. Dayam, R. A. Yunes, A. Garofalo, M. B. Bolger, N. Neamati, *Bioorg. Med. Chem.* 2007, 15, 4985.
- [6] X. Liu, M. L. Go, Bioorg. Med. Chem. 2007, 15, 7021.
- [7] M. Cabrera, M. Simoens, G. Falchi, M. L. Lavaggi, O. E. Piro, E. E. Castellano, A. Vidal, A. Azqueta, A. Monge, A. López de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto, M. González, *Bioorg. Med. Chem.* **2007**, *15*, 3356.
- [8] J. P. Raval, K. R. Desai, ARKIVOC 2005, xiii, 21-228.
- [9] P. Guo, W. Chen, J. Song, W. Cao, C. Tian, J. Mol. Struct. (Theochem) 2008, 33, 849.
- [10] T. Lovász, G. Túrós, L. Găină, A. Csámpai, D. Frigyes, B. Fábián, I. A. Silberg, P. Sohár, J. Mol. Struct. 2005, 751, 100.
- [11] N. N. Kolos, B. V. Paponov, V. D. Orlov, M. I. Lvovskaya, A. O. Doroshenko, O. V. Shishkin, J. Mol. Struct. 2006, 785, 114.
- [12] J. Maynadié, B. Delavaux-Nicot, D. Lavabre, S. Fery-Forgues, J. Organomet. Chem. 2006, 691, 1101.
- [13] N. L. Silver, D. W. Boykin, Jr J. Org. Chem. 1970, 35, 759.
- [14] E. Solcaniová, S. Toma, S. Gronowit, Org. Magn. Res. 1976, 8, 439.
- [15] A. Perjéssy, D. W. Boykin, Jr L. Fišera, A. Krutosiková, J. Kovac, J. Org. Chem. 1973, 38, 1807.
- [16] T. Sotomatsu, Y. Murata, T. Fujita, J. Comput. Chem. 1989, 10, 94.
- [17] B. A. Saleh, MSc Thesis, University of Basrah, 1999.
- [18] P. Perjési, A. Perjéssy, E. Kolehmainen, E. Osz, M. Šamaliková, J. Linnanto, E. Virtanen, J. Mol. Struct. 2004, 697, 41.
- [19] P. Perjési, J. Linnanto, E. Kolehmainen, E. Osz, E. Virtanen, J. Mol. Struct. 2005, 740, 81.
- [20] G. K. Hamer, I. R. Peat, W. F. Reynolds, Can. J. Chem. 1973, 51, 897.
- [21] G. K. Hamer, I. R. Peat, W. F. Reynolds, Can. J. Chem. 1973, 51, 915.
- [22] J. Bromilow, R. T. C. Brownlee, D. J. Craik, P. R. Fiske, J. E. Rowe, M. Sadek, J. Chem. Soc. Perkin Trans. 2 1981, 753.
- [23] R. T. C. Brownlee, D. J. Craik, J. Chem. Soc. Perkin Trans. 2 1981, 760.
- [24] R. T. C. Brownlee, D. J. Craik, J. Org. Magn. Reson. 1981, 15, 248.
- [25] G. F. Fadhil, H. A. Radhy, A. Perjéssy, M. Samalikova, E. Kolehmainen, W. M. F. Fabian, K. Laihia, Z. Šustekova, *Molecules* **2002**, *7*, 833.
- [26] B. A. Saleh, S. A. Al-Shawi, G. F. Fadhil, J. Phys. Org. Chem. 2008, 21, 96.
- [27] E.P. Kohler, H.M. Chadwell, in Organic Synthesis, Coll. Vol. I, John Wiley and Sons Inc: New York, 1940, p. 78.
- [28] H. H. Szmant, A. J. Basso, J. Am. Chem. Soc. 1952, 74, 4397.
- [29] C. K. Bradsher, F. C. Brown, W. B. Blue, J. Am. Chem. Soc. 1949, 71, 3570.
- [30] R. E. Lyle, L. P. Paradis, J. Am. Chem. Soc. 1955, 77, 6667.
- [31] ChemBioDraw Ultra 11, Cambridgesoft.com, 100 Cambridge Park Drive, Cambridge, MA 02140, USA.
- [32] P. R. Wells, S. Ehrenson, R. W. Taft, Prog. Phys. Org. Chem. 1968, 6, 147.
- [33] S. A. O. Al-Shawi, PhD Thesis, University of Basrah, 1998.
- [34] C. Laurence, M. Berthelot, J. Chem. Soc. Perkin Trans. 2 1979, 98.
- [35] J. Browmilow, R. T. C. Brownlee, D. J. Craik, P. R. Fiske, J. E. Rowe, M. Sadek, J. Chem. Soc. Perkin Trans. 2 1981, 753.
- [36] D. J. Craik, R. T. C. Brownlee, Prog. Phys. Org. Chem. 1983, 14, 1.