## AMINOGLYCOSIDE ANTIBIOTICS. X CHEMICAL CONVERSION OF KANAMYCIN B TO KANAMYCIN C AND 6'-DEOXY-KANAMYCIN C

Soichiro Toda, Susumu Nakagawa and Takayuki Naito

Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan

(Received for publication August 19, 1977)

Kanamycin C was produced as a minor component in the fermentation broth of *Streptomyces kanamyceticus*<sup>1)</sup> and its total synthesis was reported by UMEZAWA *et al*<sup>2)</sup>. In connection with our aminoglycoside modification program, there was a need to obtain a sizable amount of kanamycin C. Since it was found laborious to isolate a pure sample of kanamycin C from the kanamycin fermentation, we attempted to prepare kanamycin C from a sample of commercially available kanamycin B. This paper reports the chemical conversion of kanamycin B to kanamycin C and its 6'-deoxy derivative.

The 6'-amino group of kanamycin B (1) was protected with a carbobenzoxy (Cbz) group by the activated ester method<sup>8,4)</sup> to give 6'-N-Cbz-kanamycin B (2). The remaining free amino groups of 2 were acetylated with acetic anhydride in methanol to afford the tetra-N-acetyl derivative 3 in 99% yield, mp  $> 300^{\circ}$ C;

Anal. Calc'd for  $C_{34}H_{51}N_{5}O_{16}$ ,  $H_{2}O$ : C 50.24, H 6.70, N 8.62.

Found: C 50.34, H 6.58, N 8.57.

Catalytic hydrogenation of 3 in the presence of 10% palladium on charcoal gave quantitatively the 6'-amino compound 4. IR (KBr):  $\nu_{e=0}$  1650 cm<sup>-1</sup>; NMR (D<sub>2</sub>O,  $\delta$  ppm): 2.00 (12H), 5.06 (1H, d, J=4 Hz), 5.36 (1H, d, J=4 Hz). Deamination of 4 in dil. H<sub>2</sub>SO<sub>4</sub> with NaNO<sub>2</sub> followed by isolation on Amberlite IR-120 and IRA-410 columns yielded tetra-N-acetylkanamycin C (5) in 96% yield. Crystallization from MeOH-H<sub>2</sub>O gave colorless needles, mp >300°C; IR (KBr): 1640, 1530, 1430, 1370, 1310, 1015 cm<sup>-1</sup>. Anal. Calc'd for C<sub>26</sub>H<sub>44</sub>N<sub>4</sub>O<sub>15</sub>·H<sub>2</sub>O: C 46.56, H

Anal. Calc'd for C<sub>26</sub>H<sub>44</sub>N<sub>4</sub>O<sub>15</sub>·H<sub>2</sub>O: C 46.56, H 6.91, N 8.35.

Found: C 46.53, H 7.13, N 8.49.

Compound 5 was hydrolyzed by heating under reflux with aq. Ba $(OH)_2$  for 7 hours. The hydrolysate was neutralized with  $(NH_4)_2CO_3$  and filtered to remove the resulting precipitate

(BaCO<sub>3</sub>). Chromatography of the filtrate on a CG-50 column (NH<sub>4</sub><sup>+</sup>) gave kanamycin C in 43% yield, mp 195~198°C (dec.); [ $\alpha$ ]<sub>D</sub><sup>25.3</sup>+118° (c 1.0, H<sub>2</sub>O); NMR (D<sub>2</sub>O,  $\delta$  ppm): 5.08 (1H, d, J=4 Hz), 5.33 (1H, d, J=4 Hz). TLC (S-110\*, Rf 0.60) was same as that of the authentic sample of kanamycin C.

Anal. Calc'd for  $C_{18}H_{36}N_4O_{11}\cdot\frac{1}{2}H_2CO_3\frac{3}{2}H_2O$ : C 40.97, H 7.44, N 10.33.

Found: C 41.25, H 7.65, N 10.05.

Deamination of 4 in 48% HBr with NaNO<sub>2</sub> in the cold gave 5 in 19% yield along with the 6-bromo derivative (7) in 53% yield, which were separated by silica-gel chromatography. 7: mp  $234 \sim 238^{\circ}$ C. IR (KBr):  $\nu_{e=0}$  1640 cm<sup>-1</sup>;

Anal. Calc'd for  $C_{26}H_{43}BrN_4O_{14}$   $^3_2H_2O$ : C 42.21, H 6.24, N 7.45, Br 10.76.

Found: C 42.38, H 6.64, N 7.46, Br 10.82.

Hydrogenolysis of 7 with 10% palladium on charcoal and triethylamine gave tetra-N-acetyl-6'-deoxykanamycin C (8), which showed a doublet at  $\delta$  1.14ppm (J=6 Hz) due to the 6'-methyl group in the NMR spectrum in D<sub>2</sub>O. The

## Chart 1.

 $R = NH_2$   $R_1 = H$  (Kanamycin B)

2 R = NHCbz R<sub>1</sub> = H

 $3 R = NHCbz R_1 = Ac$ 

 $4 R = NH_2 R_1 = Ac$ 

5 R = OH  $R_1 = Ac$ 

6 R = OH  $R_i = H$  (Kanamycin C)

R = Br  $R_1 = Ac$ 

8 R = H  $R_1 = Ac$ 

9 R = H R<sub>1</sub> = H (6'-Deoxykanamycin C)

<sup>\*</sup> silica-gel plate, CHCl<sub>3</sub> - MeOH - 28 % NH<sub>4</sub>OH - H<sub>2</sub>O (1: 4: 2: 1)

| Test organism                    | MIC (mcg/ml)              |                              |             |
|----------------------------------|---------------------------|------------------------------|-------------|
|                                  | Synthetic kanamycin C (6) | 6'-Deoxy-<br>kanamycin C (9) | Kanamycin C |
| Escherichia coli NIHJ            | 3.1                       | >100                         | 6.3         |
| " " K-12                         | 3.1                       | > 100                        | 6.3         |
| " K-12 NR79/W677*                | 3.1                       | > 100                        | 3.1         |
| " K-12 JR35/C600**               | > 100                     | >100                         | > 100       |
| Klebsiella pneumoniae D11        | 0.4                       | 12.5                         | 0.4         |
| Serratia marcescens A20019       | 3.1                       | 50                           | 3.1         |
| Pseudomonas aeruginosa D-15      | > 100                     | > 100                        | > 100       |
| Proteus vulgaris A9436           | 0.8                       | 25                           | 0.8         |
| Proteus mirabilis A9554          | 6.3                       | 25                           | 12.5        |
| Proteus morganii A9553           | 3.1                       | >100                         | 1.6         |
| Streptococcus aureus Smith       | 0.8                       | 12.5                         | 0.8         |
| Aycobacterium smegmatis ATCC 607 | 6.3                       | >100                         | 6.3         |

Table 1. Antibacterial activity of synthetic kanamycin C (6) and 6'-deoxykanamycin (9)

acetyl groups of 8 were removed by heating with aq. Ba(OH) $_2$  to yield 6'-deoxykanamycin C (9), mp. 177~181°C (dec.); TLC (S-110): Rf 0.70; NMR (D $_2$ O,  $\delta$  ppm): 1.25 (3H, d, J=6 Hz), 5.05 (1H, d, J=4 Hz), 5.27 (1H, d, J=4 Hz). Anal. Calc'd for  $C_{18}H_{36}N_4O_{10}\cdot\frac{1}{2}H_2CO_{3\frac{1}{2}}H_2O$ : C 43.69, H 7.53, N 11.02.

Found: C 43.61, H 7.49, N 10.82.

The antibacterial activity of 6 (synthetic kanamycin C) and 9 (6'-deoxykanamycin C) is shown in Table 1. The minimum inhibitory concentrations were determined by the two-fold agar dilution method on Mueller-Hinton agar plates using the Steers' multi-inoculating apparatus. An authentic sample of kanamycin C, tested comparatively as a reference compound, showed the same antibacterial spectrum and activity as those of synthetic kanamycin C, while the 6'-deoxy derivative showed only very weak activity

against most of the microorganisms tested.

## References

- Murase, M.; T. Wakazawa, M. Abe & S. Kawaji: Studies on kanamycin C. J. Antibiotics 24: 156~157, 1961
- UMEZAWA, S.; S. KOTO, K. TATSUTA & T. TSU-MURA: The total synthesis of kanamycin C. J. Antibiotics 21: 162~163, 1968
- KAWAGUCHI, H.; T. NAITO & S. NAKAGAWA: Antibiotic derivatives of kanamycin. Japan Kokai 48-34856, May 22, 1973; U.S. Patent 3,781,268, Dec. 25, 1973
- Kondo, S.; K. Iinuma, H. Tamamoto, K. Maeda & H. Umezawa: Synthesis of 1-N-{(S)-4-amino-2-hydroxybutyryl}-kanamycin B and -3',4'-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiotics 26: 412~415, 1973

<sup>\*</sup> aminoglycoside-6'-acetyltransferase producing strain.

<sup>\*\*</sup> aminoglycoside-3'-phosphotransferase I producing strain.