CATALYTIC REDUCTION OF HYDRAZINE TO AMMONIA BY THE REDUCED SPECIES OF  $[Mo_2Fe_6S_8L_9]^{3-}$  AND  $[Fe_4S_4L_4]^{2-}$  (L = SPh, SCH<sub>2</sub>CH<sub>2</sub>OH)

Yoshiyuki HOZUMI, Yoshinobu IMASAKA, Koji TANAKA, and Toshio TANAKA\* Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565

Hydrazine can be reduced to  $NH_3$  catalytically in the presence of  $[Mo_2Fe_6S_8L_9]^{3-}$  or  $[Fe_4S_4L_4]^{2-}$  (L = SPh, SCH<sub>2</sub>CH<sub>2</sub>OH) in H<sub>2</sub>O or MeOH/THF by the controlled potential electrolysis. The maximum current efficiency in the electrochemical reduction of  $N_2H_4$  attains 97% and the turnover number of  $NH_3$  produced per 1 h is 23 in MeOH/THF.

The reduction of N<sub>2</sub> to NH<sub>3</sub> by nitrogenase has been suggested to proceed *via* enzyme-bound N<sub>2</sub>H<sub>2</sub> and N<sub>2</sub>H<sub>4</sub> as intermediates.<sup>1)</sup> In fact, the formation of N<sub>2</sub>H<sub>4</sub> was confirmed in the reduction of N<sub>2</sub> by *Klebsiella pneumonia*,<sup>2)</sup> and some dinitrogen-molybdenum and -tungsten complexes reacted with mineral acids to afford N<sub>2</sub>H<sub>4</sub> as well as NH<sub>3</sub>.<sup>3)</sup> The reduction of N<sub>2</sub>H<sub>4</sub> to NH<sub>3</sub> also was successfully conducted by the catalyst composed of sodium molybdate, L-cystein, and NaBH<sub>4</sub> with the turnover number of 4.2 NH<sub>3</sub> mol/(Mo-cystein complex mol)h.<sup>4)</sup> The amount of H<sub>2</sub> which would evolve concomitantly, however, has not been determined, though the determination of H<sub>2</sub> is essentially important for examining the selectivity of such a catalytic system. Recently, we have found that N<sub>2</sub> can be reduced to NH<sub>3</sub> by the electrochemically reduced species of  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  and  $[Fe_4S_4(SPh)_4]^{2-}$ .<sup>5)</sup> This result has driven us to study the reduction of N<sub>2</sub>H<sub>4</sub> to NH<sub>3</sub>.

The reduction of  $N_2H_4$  was conducted on an Hg working electrode in an  $H_2O$  or MeOH/THF solution containing  $[R_4N]_3[Mo_2Fe_6S_8L_9]$  (R = *n*-Bu for L = SPh,<sup>6a)</sup> R = Et for L = SCH<sub>2</sub>CH<sub>2</sub>OH<sup>6b)</sup>) or  $[R_4N]_2[Fe_4S_4L_4]$  (R = *n*-Bu for L = SPh,<sup>7a)</sup> R = Me for L = SCH<sub>2</sub>CH<sub>2</sub>-

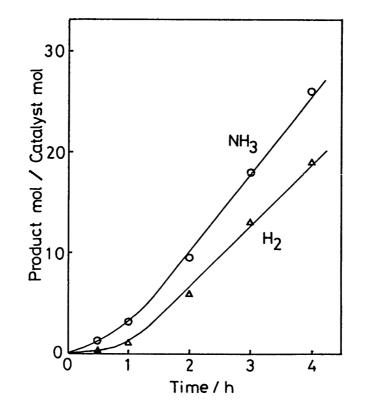



Fig. 1. The reduction of  $N_2H_4$  by the reduced species of  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  (-1.30 V vs. SCE) suspended in  $H_2O$  at pH 12.0.

 ${
m OH}^{7b}$ ) under the controlled potential electrolysis conditions, as described elsewhere.<sup>8)</sup> Hydrazine was reduced to NH<sub>3</sub> with concomitant evolution of H<sub>2</sub> arising from the reduction of hydrogen ions under the controlled potential electrolysis  $(-1.30 \text{ V } vs. \text{ SCE}) \text{ of } [Mo_2Fe_6S_8(SPh)_9]^{3-9}$  (16 µmol) suspended<sup>10)</sup> in an aqueous solution (20 cm<sup>3</sup>) of  $N_2H_4$  (1.4 mmol) at pH 12.0 buffered with  $H_3PO_4$ -NaOH. The plots of the amount of NH3 or H2 produced divided by the amount of the catalyst vs. the reaction time were linear after the initial induction period of about 1 h, as shown in Fig. 1. The amounts of  $NH_3$  and  $H_2$  produced attain 26 and 19 times of that of the catalyst in 4 h, respectively, indicating that the reduction of  $N_2H_4$ and hydrogen ions proceeds catalytically. Table 1 summarizes the results of the electrochemical reduction of  $N_2H_4$  by four catalysts<sup>11)</sup> in  $H_2O$  at pH 7.0 and 12.0 or in MeOH/THF. The sum of current efficiencies calculated from Eq. 1 for the

Current efficiency (n) = 
$$\frac{\text{Amount of NH}_3 \text{ or } 2H_2 \text{ produced}}{\text{Quantity of electricity consumed/96480 C mol}^{-1} \times 100 \quad (1)$$

| Cluster                                                                                                            | -                                                |                            | Amount of product |      |                |                   |                    |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|-------------------|------|----------------|-------------------|--------------------|
|                                                                                                                    |                                                  | Applied<br>potential       | Charge            | NH 3 | <sup>H</sup> 2 | η <sub>NH</sub> 3 | $\eta_{\rm H}^{2}$ |
|                                                                                                                    |                                                  | V vs. SCE                  | C                 | µmol |                | <u></u><br>१      |                    |
| [Mo <sub>2</sub> Fe <sub>6</sub> S <sub>8</sub> (SPh) <sub>9</sub> ] <sup>3-</sup>                                 | н <sub>2</sub> 0, рн 7.0 <sup>а</sup>            | -1.30                      | 175               | 283  | 724            | 16                | 80                 |
|                                                                                                                    | н <sub>2</sub> 0, рн 12.0                        | <i>a</i> -1.30             | 110               | 413  | 311            | 36                | 56                 |
|                                                                                                                    | MeOH/THF                                         | -1.25                      | 145               | 1450 | 24             | 97                | 3.2                |
| $[Fe_4S_4(SPh)_4]^{2-}$                                                                                            | <sup>H</sup> 2 <sup>O, pH</sup> 7.0 <sup>a</sup> | -1.30                      | 268               | 138  | 1370           | 5.0               | 99                 |
|                                                                                                                    | H <sub>2</sub> O, pH 12.0                        | <i>a</i> -1.30             | 49                | 97   | 200            | 19                | 79                 |
|                                                                                                                    | MeOH/THF                                         | -1.25                      | 171               | 790  | 494            | 44                | 56                 |
| [Mo <sub>2</sub> Fe <sub>6</sub> S <sub>8</sub> (SCH <sub>2</sub> CH <sub>2</sub> OH) <sub>9</sub> ] <sup>3-</sup> | н <sub>2</sub> 0, рн 7.0 <sup>b</sup>            | -1.25                      | 316               | 556  | 1370           | 17                | 83                 |
|                                                                                                                    | H <sub>2</sub> O, pH 12.0                        | -1.25                      | 34                | 199  | 62             | 57                | 35                 |
| $[Fe_4S_4(SCH_2CH_2OH)_4]^{2-}$                                                                                    | н <sub>2</sub> 0, рн 7.0 <sup>b</sup>            | <b>-</b> 1.25 <sup>°</sup> | 194               | 109  | 936            | 5.4               | 93                 |
|                                                                                                                    | н <sub>2</sub> 0, рн 12.0                        | -1.25                      | 85                | 110  | 372            | 12                | 84                 |
| None                                                                                                               | Н <sub>2</sub> 0, рН 7.0                         | -1.30                      | 0                 | 0    | 0              | -                 | _                  |

Table 1. Electrochemical Reduction of  $N_2H_4$  (1.4 mmol) in the Presence of the Cluster Compounds (16 µmol) for 4 h at 25°C

<sup>*a*</sup> Suspension. <sup>*b*</sup> HSCH<sub>2</sub>CH<sub>2</sub>OH (1.0 x  $10^{-2}$  cm<sup>3</sup>) was added in order to stabilize the cluster in H<sub>2</sub>O (20 cm<sup>3</sup>) at pH 7.0. <sup>*c*</sup> For 1 h at 25°C.

formation of NH<sub>3</sub> ( $\eta_{\rm NH_3}$ ) and H<sub>2</sub> ( $\eta_{\rm H_2}$ ) is almost 100% within the experimental errors in most cases; the evolution of N<sub>2</sub> resulting from the decomposition of N<sub>2</sub>H<sub>4</sub> has not been observed. Therefore, the reaction involved only the reductions of N<sub>2</sub>H<sub>4</sub> (Eq. 2) and hydrogen ions (Eq. 3) taking place competitively.

$$N_{2}H_{4} + 2H^{+} + 2e^{-} \longrightarrow 2NH_{3}$$
(2)  
2H^{+} + 2e^{-} \longrightarrow H\_{2} (3)

The catalytic activity of  $[Mo_2Fe_6S_8L_9]^{3-}$  was apparently superior to  $[Fe_4S_4L_4]^{2-}$  with respect to the formation of NH<sub>3</sub>. All the catalysts gave larger  $\eta_{\rm NH_3}$  values at pH 12.0 than at pH 7.0, suggesting that smaller hydrogen ion concentrations favour the formation of NH<sub>3</sub> rather than H<sub>2</sub>. In fact, the  $\eta_{\rm NH_2}$  value in an MeOH/THF

(1:1 v/v) solution of  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  or  $[Fe_4S_4(SPh)_4]^{2-}$  containing LiCl as supporting electrolyte was several times larger than that in H<sub>2</sub>O at pH 12.0, as expected from the weak acidity of MeOH; in particular an  $\eta_{\rm NH_3}$  value of 97% was obtained with  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  in MeOH/THF (Table 1).

## References

- 1) H. Dalton and L. E. Mortenson, Bacterial. Rev., <u>36</u>, 231 (1972).
- 2) R. N. F. Thormoly, A. J. Eady, and D. J. Lowe, Nature, 272, 557 (1978).
- J. Chatt, A. J. Pearman, and R. L. Richards, J. Chem. Soc., Dalton Trans., <u>1977</u>, 1852. T. Takahashi, Y. Minobe, M. Sato, Y. Uchida, and M. Hidai, J. Am. Chem. Soc., 102, 7461 (1980).
- 4) G. N. Schrauzer, P. R. Robinson, E. L. Moorehead, and T. M. Vickrey, J. Am. Chem. Soc., <u>98</u>, 2816 (1976).
- 5) K. Tanaka, Y. Hozumi, and T. Tanaka, Chem. Lett., <u>1982</u>, 1203.
- 6) (a) G. Christou, C. D. Garner, and F. E. Mabbs, J. Chem. Soc., Chem. Commun., 1978, 740; (b) G. Christou, C. D. Garner, and F. E. Mabbs, *ibid.*, <u>1979</u>, 91.
- 7) (a) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Am. Chem. Soc., <u>95</u>, 3523 (1973); (b) C. L. Hill, J. Renaud, R. H. Holm, and L. E. Mortenson, *ibid.*, 99, 2549 (1977).
- 8) K. Tanaka, M. Tanaka, and T. Tanaka, Chem. Lett., <u>1981</u>, 895. K. Tanaka, Y. Imasaka, M. Tanaka, M. Honjo, and T. Tanaka, J. Am. Chem. Soc., <u>104</u>, 4258 (1982).
- 9) The cyclic voltammetric anode peak potentials of  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  in MeOH/THF were -1.08 and -1.25 V vs. SCE for the 3-/4- and 4-/5- processes, respectively.
- 10) A dimethylsulfoxide solution (0.5 cm<sup>3</sup>) of  $[Mo_2Fe_6S_8(SPh)_9]^{3-}$  (16 µmol) and Triton X-100 (1.5 x  $10^{-2}$  cm<sup>3</sup>) was injected into water (20 cm<sup>3</sup>) to disperse the cluster.
- 11) The anode peak potential of  $[Fe_4S_4(SPh)_4]^{2-}$  (2-/3-) in MeOH/THF was -1.25 V vs. SCE and those of  $[Mo_2Fe_6S_8(SCH_2CH_2OH)_9]^{3-}$  (3-/4- and 4-/5-) and  $[Fe_4S_4(SCH_2-CH_2OH)_4]^{2-}$  (2-/3-) in water at pH 7.0 were -0.58, -0.76, and -0.75 V vs. SCE, respectivery.

(Received March 26, 1983)