SHORT COMMUNICATION

TRITERPENOIDS AND OTHER CONSTITUENTS FROM THE FAR-EASTERN SPECIES OF *ALNUS*

N. I. UVAROVA, G. I. OSHITOK, N. I. SUPRUNOV and G. B. ELYAKOV

Institute of Biologically Active Substances, Far East Research Centre, Academy of Sciences of the U.S.S.R., Vladivostok 22, U.S.S.R.

(Received 10 March 1971)

Abstract—The following substances were isolated from the unsaponifiable part of the ethereal extracts of the Far-Eastern species of Alnus (A. hirsuta, A. fruticosa, A. mandshurica, A. japonica and A. kamtschatica): heptacosane, a mixture of four aliphatic alcohols, lupenone, glutin-5-cn-3-ol, a mixture of α - and β -amyrins and β -sitosterol. Moreover, 1,7-diphenylheptan-3,5-diol was isolated for the first time from the extracts of A. fruticosa and A. mandshurica.

INTRODUCTION

WHILE searching for accessible sources of tetracyclic triterpenes of the dammarane series, we have studied the chemical composition of the leaves of Far-Eastern species of Alnus. Previously, Fischer and Seiler¹ had shown the presence of such triterpenes in Alnus glutinosa. However, their presence in the Far-Eastern species has not previously been demonstrated; β -sitosterol was found to be predominant in the unsaponifiable fraction. A. fruticosa and A. mandshurica also contain considerable amounts of 1,7-diphenylheptan-3,5-diol.

RESULTS AND DISCUSSION

Dry leaves were extracted with ether at room temp., and the resultant extract was then subjected to the usual treatment. The unsaponifiable portion was chromatographed on Al₂O₃, and the following substances were isolated: heptacosane, m.p. 59–59.5°, mass-spectrum m/e 280 (M⁺); lupenone, m.p. 164–167°, $[\alpha]_D^{20} + 64.2°$ (c 0.25; CHCl₃); glutin-5-en-3-ol, m.p. 211–212°, $[\alpha]_D^{20} + 54.4°$ (c 0.19; CHCl₃); and β -sitosterol, m.p. 136–138°, $[\alpha]_D^{20} - 38°$ (c 1.3; CHCl₃). None of these substances showed a depressed m.p. on admixture with an authentic sample.

By treating the fraction containing β -sitosterol and aliphatic alcohols with urea, and by subsequent breaking of clathrate compounds with water, the total aliphatic alcohols were obtained and identified by IR and mass spectral data.² The mass spectrum showed a pattern characteristic of linear aliphatic compounds. The higher mass values involved a series of peaks with m/e 336, 308, 280 and 252, with relative intensity ratios 1:8:6:3 respectively. We can assume that m/e 336 corresponds to (M⁺-18) of tetracosanol; the peak ratios for the ions (M⁺-18), (M⁺-18-28), (M⁺-18-56) and (M⁺-18-84) of authentic tricosanol* are 1:0·3:0·1:0·1 respectively. One may therefore conclude that the ions (M⁺-18) of com-

^{*}A sample of tricosanol was kindly supplied by Dr. A. Watanabe.

¹ F. G. FISCHER and N. SEILER, Liebigs Ann. Chem. 644, 162 (1961).

² M. NILSSON, R. RYHAGE and E. VON SYDOV, Acta Chem. scand. 11, 634 (1957).

ponents with molecular weights corresponding to $C_{22}H_{45}OH$, $C_{20}H_{41}OH$ and $C_{18}H_{37}OH$ make the principal contribution to the peaks with m/e 308, 280 and 252.

An additional substance with no definite m.p. was isolated from the unsaponifiable fraction. The substance showed one spot in various TLC systems, forming a pinkish colour with a saturated SbCl₃ solution in chloroform and showing absorption at 1650–1665, 3630 cm^{-1} in the IR in CCl₄. However, chromatography on silica gel impregnated with AgNO₃ showed two spots, indicating an isomeric mixture. The presence of peaks with m/e 426 (M⁺), 408 (M⁺-18), 218 (a), 203 (a-C17), 207 (b), 205 (e) and 189 (b-18) in the mass-spectrum of the isolated substance gives grounds for assigning it to the amyrin series.³

A sharp increase of the corresponding peaks was observed in GLC when adding corresponding derivatives of α - and β -amyrin (authentic samples) to the trimethylsilyl derivative of the substance studied.⁴ The above-mentioned substances were characteristic of all the species of *Alnus* investigated, differing only quantitatively from one to another.

A substance with m.p. 94-95° (ethyl ether, $[a]_{D}^{20} - 10^{\circ}$ (C 2·13; CHCl₃), analysing for $C_{19}H_{24}O_2$ previously described by Uvarova et al.,⁵ was isolated from A. fruticosa and A. mandshurica, IR absorption bands at 3625, 3550, 1610 and 3000-3100 cm⁻¹ testified to the presence of free and intramolecularly H-bonded hydroxyl groups and aromatic rings. The substance displays no fluorescence in UV, nor does it give a colour with FeCl₃. Acetylation with acetic anhydride and pyridine yields a chromatographically homogeneous product showing IR absorption at 1745 cm⁻¹. A mass spectrum peak with m/e 284 corresponds to M^+ and coincides with the calculated molecular weight. Peaks (m/e 266 and 248) correspond to fragments (M^+-18) and (M^+-36) respectively, indicating the presence of two hydroxyl groups in the molecule; fragments with m/e 77 (C₆H₅⁺) and 91 (C₆H₅CH₂⁺) confirm the presence of monosubstituted aromatic rings in the molecule of the substance studied. The latter is not oxidized with periodate. Oxidation of the diol with CrO_3 in pyridine (0-5°) yielded the ketoalcohol, m.p. $51-52\cdot5^{\circ}$ (light petroleum), $[a]_{D}^{20} + 1^{\circ}.5$ (C 0.09; CHCl₃) analysing for $C_{19}H_{22}O_2$ with IR peaks at 1715 and 3400–3600 cm⁻¹. Oxidation of the diol with $KMnO_4$ in acetone yielded the same ketoalcohol and a mixture of organic acids, subsequently converted into the methylesters. A GLC study of these esters showed the presence of methylphenylpropionate and methyl benzoate. The formation of phenylpropionic acid per se indicates to the presence of a C₆H₅--CH₂--CH₂--CHOH-- fragment in the original diol. This allows us to conclude that the diol is a 1,7-diphenylheptane-3,5diol, corroborated by the NMR data.

The presence of two monosubstituted aromatic rings (10-H) was confirmed by intense signals at 7.2 ppm. The quintet at 3.91 ppm indicated the presence in the molecule of two symmetrically situated secondary hydroxyls in the $-CH_2$ -CHOH- CH_2 -CHOH- CH_2 -CHOH- CH_2 -CHOH- CH_2 -CHOH- CH_2 -fragment. The secondary nature of the hydroxyl groups was corroborated by the NMR spectrum of the acetate in which the quintet shifted to a low field at 4.9 ppm. The protons of the hydroxyl groups gave a singlet at 3 ppm; the singlet vanished in the NMR spectra of the diol and its acetate, recorded in CD_3OD . The H-atoms of the three methylene groups adjacent to -CHOH- formed a multiplet at 1.50-1.95 ppm, while the protons of the two methylene groups located near the benzene rings were observed as a multiplet at 2.55-2.90 ppm.

³ H. BUDZIKIEWICZ, J. M. WILSON and C. DJERASSI, J. Am. Chem. Soc. 35, 3687 (1963).

⁴ P. CAPELLA, E. FEDELI and M. CIRIMELE, Chem. Ind. 39, 2590 (1963).

⁵ N. I. UVAROVA, G. I OSHITOK, A. K. DZIZENKO and G. B. ELYAKOV, *Khimija Prirod. Sojedin.* No. 4, 463 (1970).

EXPERIMENTAL

The IR spectra were recorded in CHCl₃ and pellets of KBr. The MS were recorded on a 'MX-1303' spectrometer (U.S.S.R.). The NMR spectra were obtained on a 'ZKR-60' spectrometer (Karl Zeiss, Jena) at 60 Mc in CDCl₃. The methyl esters of the acids were identified on a 'Zvet-3' GLC equipped with a flame-ionizing detector. The 1 m \times 4 mm column was packed with 10% SE-30 Chromosorb W (60–80 mesh), run at 115°.

A similar column with 5% SE-30 on Chromosorb W (60–80 mesh) was used to separate α - and β -amyrin trimethylsilyl ethers. In both cases, the carrier-gas was argon, and the flow rate—60 ml/min.

Acknowledgements.—We thank Dr. P. G. Gorovoy and Dr. N. S. Pavlova for leaf samples of various species of *Alnus*. Our thanks are also due to Dr. S. E. Odinokov and Dr. S. N. Dzizenko for recording the IR spectra, to Dr. Yu. N. Elkin for the M-S, as well as to Dr. A. K. Dzizenko and Dr. V. V. Isakov for the NMR spectra and their identification.

Key Word Index—Alnus; Betulaceae; triterpenes; lupenone; amyrins; β -sitosterol.