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A low Pt-containing Ni-Pt nanocatal yst immobilized on MOF/rGO composite has been

synthesized for hydrogen production from hydrous hydrazine and hydrazine borane.
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Abstract

As an ideal hydrogen supplier in liquid phase, bydrhydrazine has gained a lot of
attention for safe and efficient storage as weltrassportation of hydrogen. Herein, a
low Pt-containing Ni-Pt bimetallic catalyst immabkéd on novel MIL-101/rGO
composite has been prepared by a facile impregnadiduction approach.
Unexpectedly, the resultant NP /MIL-101/rGO catalyst exhibits optimal catalytic
performance and 100%:;ts$electivity for hydrogen evolution from hydrousdngzine
under alkaline conditions at 323 K with, givingwarover frequency (TOF) value of
960.0 K, which is a relatively higher value ever reportetierogeneous catalysts. Even
at room temperature, NP /MIL-101/rGO catalyst shows excellent catalyticiaty
for dehydrogenation of hydrazine as well as hydmzborane. In addition, the
Nig.oPth./MIL-101/rGO catalyst also exhibits excellent duli&p Even after eight
recycles, the catalytic activity is no significatécrease, and the,Helectivity still

remains 100%.



Keywords. Hydrazine; Nanoparticle; Metal-organic framewo@gaphene; Hydrogen
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1. Introduction

Hydrogen energy, as a highly-efficient, sustainalplellution-free, and abundant
source of secondary energy, has attracted incigasterest [1-3]. However, safely
storing and transporting hydrogen remains a grdrallenge for the achievement of
hydrogen economy society [4-6]. Recently, more arade efforts have been made to
study chemical hydrides as efficient carriers ftvernical hydrogen storage [7-9].
Hydrous hydrazine (MH4H.O) has great potential as a promising liquid chainic
hydrogen storage material for storage and tranapont of hydrogen, because of its
high hydrogen content (8.0 wt%), stable liquid estatontoxicity, and clean emissions
(only nitrogen as byproduct via equation (1)) [H]:-1To this end, the incomplete
decomposition of hydrazine to ammonia (JHia equation (2) should be avoided
[13-15]. Consequently, the key is to develop simpled effective strategies to
synthesize a high-efficient and low-cost heterogese catalyst for complete
dehydrogenation of hydrazine.

BHa(l) — N2(9) + 2Hx(9) 1)
3bHa(l) — N2(g) + 4NHs(9) (2)

In recent years, noble-metal-containing nickel-dad@metallic heterogeneous
nanocatalysts, such as Ni-Rh [16-18], Ni-Pt [19;Xi}Ir [22, 23], and Ni-Pd [24-26],
have been synthesized and explored for dehydrogenat hydrazine. Numerous

studies have demonstrated that Ni-Pt catalystsegessxcellent catalytic properties for
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hydrazine decomposition [27-29]. Generally, orgasucfactants could help to control
and stabilize the metal nanoparticles (NPs), batrtietal active sites may be blocked
after involved organic stabilizers, leading to éederation of catalytic performance [30,
31]. Loading the metal NPs onto the inorganic suppith large specific surface area
could stabilize the metal NPs without aggregati@f, [32]. Recently, metal-organic
frameworks (MOFs) and graphene oxide (GO) have hmmrsidered as promising
carriers due to their unique structure and progeif83-39]. To be noted, lots of studies
find that the catalytic performance and stabilify MOFs/GO composites, to some
extent, have been enhanced in comparison with M@Es and GO [40-43].

Herein, low noble-metal-containing Ni-Pt NPs haveet immobilized on
MIL-101/rGO composite using the facile impregnatreauction method without the
help of surfactant. Interestingly, the resultang JRip /MIL-101/rGO shows excellent
catalytic performances and 100% Bklectivity for decomposition of hydrazine and
hydrazine borane at 323 K, affording turnover freraey (TOF) values of 960.0 and

1579.9 K, respectively.

2. Materialsand methods
2.1. Materials

Graphite powder (J&K Chemical, 99%), sulfuric adithSO,;, Nanchang Xinguang
Fine Chemical Works, 98%), phosphorus pentoxid®{PTianjin Fuchen Chemical
Reagent, 98%), potassium permanganate (KiMiNanchang Xinguang Fine Chemical

Works, >99.5%), potassium persulfate,80s, Tianjin Fuchen Chemical Reagent,



99.5%), n-pentane (gH1,, Sigma-Aldrich, 99.5%), hydrogen peroxide,(4, Tianjin
Fuchen Chemical Reagent, 30%), chromium nitrateahgadrate (Cr(NG)s9H.0,
Aladdin, 99%), aqueous hydrofluoric acid (HF, Aladd40 wt%), terephthalic acid
(H2BDC, Aladdin, 99%), nickel (I) chloride hexahydeaiNiCl,:6H,O, Aladdin, 98%),
potassium (Il) tetrachloroplatinate fRtClL, J&K Chemical, 99.95%), hydrous
hydrazine (NH4H>O, Sigma-Aldrich, 98%), 1,4-dioxane fd0,, J&K Chemical,
99.8%), sodium borohydride (NaBHAcros, 98%), sodium hydroxide (NaOH, Tianjin
Fuchen Chemical Reagent, 96%), and hydrazine héatsusalt (NH4 1/2H,SO,,
Sigma-Aldrich, 99.5%) were from commercial souraaed used as received. Hydrazine
borane (NH4BH3) was prepared according to the procedure repantditerature [25,
44].
2.2.  Synthesis of MIL-101/GO composite

MIL-101/GO composite was synthesized using a simmt@thod according to the
procedure for synthesis of MIL-101 [27, 45]. 4.00§ Cr(NQ5)3-9H,O, 400 mg of
as-prepared GO, 0.5 mL of HF, and 1.6 g sBHIC were dispersed in 70 mL water. Then,
the above suspension was heated to 493 K and nmadtéor 8 h. After the resultant
suspension was cooled to room temperature, theupragas washed with water and
ethanol. To further remove the un-reacte8BIC, the as-synthesized sample was soaked
in ethanol solution at 353 K for 24 h, then in {1.0 M) solution at 343 K for another
24 h. Finally, the resulting sample was washed efttanol three times and followed by
drying under vacuum at 323 K overnight.

2.3.  Synthesis of NiPt/MIL-101/rGO



NiPt/MIL-101/rGO catalyst was synthesized by a ladmpregnation-reduction
approach. Typically, 65 mg of as-synthesized MIIABO composite, 0.09 mmol of
NiCl,-6H,0, and 0.01 mmol of #tCl, were ultrasonically dispersed in 5 mL water. The
resultant suspension was keep stirring for 6 imfaregnate the metal salts. Subsequently,
30 mg of NaBH was added into the above mixture to obtaiggRb /MIL-101/rGO
nanocatalyst. NPt,/MIL-101/rGO nanocatalysts with other different molratios of
Ni/Pt (0:1, 0.3:0.7, 0.5:0.5, 0.7:0.3, and 1:0)evprepared following the same procedure
except that NIGI6H,O and KPtCl, with different molar ratios were added.
Nig.oPt./MIL-101/rGO nanocatalysts with different metal divags were also prepared
by changing the addition contents of MIL-101/GO poms. Additionally, the
NipoPlh.i/rGO and Nj Pt /MIL-101 nanocatalysts were prepared using the lami
method above, by replaced the support materiaQa@d MIL-101, respectively.

24. Catalytic activities

The catalytic reaction equipment used to measweHN, evolution from hydrous
hydrazine or hydrazine borane is similar to thavpusly reported [46]. Typically, 5 mL
agueous suspension containing the obtained cataigss.0 mmol NaOH was added into
the reactor. One port of the reactor was used &asure the volume of the produced gas,
while the other port was directly used to introdingelrous hydrazine (2.0 mmol) or
hydrazine borane (1.0 mmol). A trap filled with ingdhloric acid (1.0 M) was placed
between the reactor and gas buret to absorb aegsed NBH The H selectivity ¢)
toward hydrogen production from hydrous hydrazinald be calculated on the basis of

equation (3), which can be deduced from equatidhs(d (2). The Kselectivity 5)
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toward hydrogen generation from hydrazine boranddcbe evaluated according to
equation (4), which can be deduced from equatibphq2), and equation (5).
NH; — 20H; + (20+1)/3N, + 4(1-w)/3NH;3 3)
NoH4BH3 + 3H,O — B(OH)z + (3+B)H» + (28+1)/3N; + 4(18)/3NH3  (4)
NH4BHs(s) + 3R0(I) — N2Ha(l) + B(OH)s(I) + 3H2(9) )
As NH;z is highly solution in hydrochloric acid and watie gas volume measured by the
gas buret contains only hydrogen and nitrogen, fahich the molar ratiol =
n(H>+N2)/n(N2H4) andy = n(H2+N2)/n(N.H4BH3) could be calculated [17-20]. Therefore,

the H, selectivitya andg could be calculated through equations (6) andr€gpectively.

a=— I/l = GED <§ <1< 3)] (6)
-7 8 Iy ~ 7(N,H,BH,) (? =v= 6)] 7

3. Resultsand discussion
3.1. Synthesisand characterization of catalysts

The procedure of immobilized Ni-Pt NPs on MIL-1@® composite is illustrated in
Scheme 1. Briefly, the as-prepared GO was hydrothlly treated together withJBDC
and Cr(NQ)3s-9H,0 to get MIL-101/GO composite material. The resulfdIL-101/GO
composite was dispersed in water through ultrasoiatidwed by addition of NiGland
KoPtClL. Finallyy NaBH, as the reducing agent was added to obtain the
NiPt/MIL-101/rGO nanocatalysts. Among all the asgared catalysts,

Nio.oP% /MIL-101/rGO with 10.0 wt% Ni-Pt loading was seledtas a model catalyst for



full characterization, because of its excellentydlebgenation catalytic performance.
The crystal structures of GO, MIL-101, MIL-101/GONi/MIL-101/rGO,
NiPt/MIL-101/rGO, and Pt/MIL-101/rGO samples wereacacterized by power XRD
(Fig. 1 and Fig. S1). As shown in Fig. 1a and By, the characteristic diffraction peaks
of MIL-101 can be apparently observed in MIL-101/@0Omposite, indicating the
successful formation of MIL-101 crystals on GO [28]. This observation has been
further confirmed by FTIR and Raman spectra (F&). $he characteristic diffraction
peaks of MIL-101 crystal are still retained afteading of metal NPs (Fig. 1a),
suggesting the crystalline structure of MIL-101sisble during catalyst preparation.
Additionally, the wide-angle XRD pattern of NiPt/ML01/rGO shows a broad and
weak diffraction peaks at92= 42.7° (Fig. 1b), which is located between the(Mil)
(JCPDS no. 04-0850) and Pt (111) (JCPDS no. 04)08arly demonstrating the
formation of the Ni-Pt alloy [21]. Furthermore, XP&asurements were performed to
reveal the elemental compositions and electromigctire of Np P /MIL-101/rGO
nanocatalyst. The survey XPS full spectrum fopdRi/MIL-101/rGO shows the
co-existence of Ni, Pt, Cr, C, and O (Fig. S3).sAswn in Fig. 2a, the binding energies
for Ni 2ps» and Ni 2p, at 852.9 and 870.1 eV are clearly observed in (INXPS
spectrum, which could be assigned to states 0f48]. For Pt 4f XPS spectrum, the
binding energies for Pt 45 and Pt 4§, at 71.6 and 74.9 eV are attributed to states’of Pt
(Fig. 2b) [32]. In addition, the binding energies Ni 2p;, and Ni 2p,, at 853.5 and
873.5 eV are corresponded td*\iwhich could be explained by the surface oxidatibn

Ni during the sample preparation process for XBE[#9]. Besides, the Ni 3p peaks at
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about 858.2 eV and Ni 2p peak at about 877.0 eV are assigned to the satpdiaks of
Ni [15]. These results suggest that Ni-Pt NPs casegdoof metallic Ni, metallic Pt and a
little amount of oxidized Ni have been successftolyned on MIL-101/rGO composite.

The SEM images present that original GO is a tiich arinkled lamellar structure
(Fig. 3a), while MIL-101 material appears a reguwatahedral morphology (Fig. 3b).
The detail morphology of NbuP%H /MIL-101/rGO nanocatalyst was investigated via
TEM. As shown in Fig. 3c,d, and Fig. S4, the NiNRs (~9.2 nm, Fig. S5) are well
dispersed on MIL-101/rGO composite surface. Thé m&solution TEM image shows
the lattice fringes of NigPt /MIL-101/rGO nanocatalyst with d-spacing of 0.218 n
(Fig. 3e), confirming the formation of Ni-Pt (11d)anes [27, 50]. Moreover, the SAED
pattern displays a diffraction ring radius with @ &nm (Fig. 3f), further implying that
the successful formation the structure of Ni-Pbwl[13]. The corresponding EDX
analysis of Nj oP% //MIL-101/rGO further indicates the existence of Ri, Cr, C, and O
elements (Fig. S6).

The Brunauer-Emmett-Teller (BET) specific surfaceaa of as-prepared samples
were determined via nitrogen adsorption-desorpti®stherms measuremengdter
dehydration under vacuum at 373 K for 8 h. As showaig. 4, the BET specific surface
area for MIL-101/GO composite is measured to beéd3#Bg’, which is larger than that
of pure MIL-101 (2891 rhg?l). The pure GO sample prepared in the present work
shows a very low specific surface area of only £8gh(Fig. S7), which is much lower
than that of the real specific surface area of &petsed in the solution, probably due to

the overlapping of graphene sheets within the agdfregation during the drying process
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[17]. To be noted, there is a distinctly adsorptioysteresis loop in MIL-101/GO
composite, revealing that a new pore space is foimeéveen MIL-101 crystal and GO in
the composite [45]. In addition, the specific sodaarea of the as-prepared
NiooPt./MIL-101/rGO nanocatalyst (1371 %) is lower than that of MIL-101/GO,
revealing that a part of the pores and/or defeetewccupied by Ni-Pt NPs [51]. This
MIL-101/GO composite with high specific surface ais typically beneficial for mass
transfer processes, which can largely increasec#it@ytic dehydrogenation reaction
dynamics. On the other hand, the porous surfaaetate could offer steric restriction to
confine and prevent the growth of the metal NPs §3335].
3.2. Catalytic performances

The catalytic performances for hydrazine decommositvere investigated under
alkaline conditions. As presented in Fig. 5, the dRt/MIL-101/rGO nanocatalyst
performs the best dehydrogenation activity of hyar@, releasing 3.0 equivalents of
(N2+Hy) in only 3.0 min with a TOF value of 960.0 twhich is a relatively higher value
over heterogeneous catalysts reported previouslihfe reaction (Table S1) [8, 11, 14,
17, 22, 23, 29, 52-55]. For comparison, the aaisivf Np 0P /MIL-101, Nig Pl 1/rGO,
pure NpoPth1 NPs, and MIL-101/GO were also measured. Cleallythase reference
catalysts exhibit much lower catalytic activitidgan that of NjoPt /MIL-101/rGO,
giving the corresponding TOF values of 452.8, 158753, and 0, respectively. This
remarkable catalytic activity could be directlyréiited to its unique structure and high
specific surface area.

Then, the effect of Ni/Pt molar ratios in NiPt/MLG1/rGO nanocatalysts on the

9



catalytic performances for hydrazine decompositwars carefully investigated. As
shown in Fig. 6, the activities and selectivity sies Ni/Pt molar ratios show typical
volcano-shaped profile. The monometallic Ni/MIL-1G30 exhibits a poor catalytic
performance and Hselectivity, while the monometallic Pt/MIL-101/rG@ almost
inactive. Interestingly, after addition of Ni torfo Ni-Pt alloy, the bimetallic catalysts
exhibit a much higher activity and selectivity caangd with their monometallic
counterparts. With the increasing of Ni/Pt molatios the activities of hydrazine
dehydrogenation are increased at first and themypii catalysis can be obtained by using
a Ni/Pt ratio of 0.9:0.1. A further increase of Rii/molar ratios leads to the loss of
catalytic activities. Meanwhile, ICP-AES analysisntirmed that the Ni/Pt ratios of
as-prepared catalysts match the predesigned trehtha actual contents of Ni and Pt are
close to the nominal values (Table S2). To revsabiptimal metal loadings, the catalytic
activities Np oPt /MIL-101/rGO nanocatalysts with the different loags of Ni-Pt NPs
(5.0, 7.5, 10.0, and 12.5 wt%) have been also tigated (Fig. S8). Results show that
Nip.oPt./MIL-101/rGO nanocatalyst with 10.0 wt% total Ni-Rtading exhibits the
highest catalytic activity for hydrazine decompsit These enhanced catalytic
performances might be not only attributed to thtermetallic synergic effects, but also
the metal-support interaction [51, 56].

To investigate the effect of NaOH, the catalyticfpgnances have been tested with
different NaOH concentrations (Fig. S9)obPty.//MIL-101/rGO shows poor activity in
the absence of NaOH with only 2.3 equivalents of{M,) generated in 29.2 min. As the

NaOH concentration increased to 1.0 M, the catabtiivity is significantly improved.
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When the NaOH concentration is further increaddths a negative effect, revealing that
the optimal NaOH concentration was 1.0 M. As dentrated in Fig. S10, pure NaOH
has no catalytic activity, indicating that NaOHaisted as a promoter, not a catalyst. The
alkaline environment not only promote the rate-deieing step of hydrazine
decomposition into Nand B (N;H; — NoHs + HY), but also inhibit the generation of
byproduct NH, which raises the fselectivity [28, 51, 57].

Furthermore, the effect of reaction temperaturédnyparazine dehydrogenation over
optimized Np dP1./MIL-101/rGO nanocatalyst was investigated. As shaw Fig. 7a,
the catalytic activities are rapidly enhanced wnitreasing the reaction temperature. The
corresponding TOF values are calculated to be 18346, 638.3, 960.0, and 13636 h
at 298, 308, 313, 323, and 333 K, respectively.(An). According to the rate constant
of the hydrazine decomposition reaction at diffetemperatures, the Arrhenius plot of
In k versus 1/T was plotted ithe inset of Fig. 7a, the activation enerdss) (of
Nio.oP% ¥/MIL-101/rGO nanocatalyst for hydrazine decompositis 50.6 kJ-mdl This
value is much lower than most of the heterogeneataysts reported previously for this
reaction (Table S2) [8, 11, 14, 17, 22, 23, 2955p-

Recently, hydrazine borane AM,BH3), as an emerging chemical hydrogen storage
material, has triggered tremendous attention becabtigts very high hydrogen density
(15.4 wt%) and satisfactory stability under ambieonditions. The complete hydrogen
release from hydrazine borane can produce 5.0 algmts of H (N.H4BH3 (s) + 3HO
— B(OH); (1) + N2 (g) + 5H (g)) [58-61]. Considering its superior catalytroperties for

hydrazine decomposition, this optimized, Bt /MIL-101/rGO nanocatalyst was also
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used to hydrogen evolution from hydrazine borartb@asame condition. As presented in
Fig. 7c, the influence of reaction temperature @hmydlrogenation reaction rate of
hydrazine borane was also evaluated. Hydrogen gtoerfrom hydrazine borane
decomposition can be finished within 14.7, 4.9, 4.9, and 1.1 min at 298, 308, 313, 323,
and 333 K, respectively, corresponding to TOF v&hfe203.0, 606.1, 717.7, 1578.9, and
2654 h' (Fig. 7d). These values are relatively high valwsong the reported
heterogeneous catalysts [13, 17, 23, 25, 27, 4458&0]. The activation energies for
BHs; group hydrolysis K5, Part 1) and BH; moiety decompositionE,,, Part 2) of
hydrazine borane are determined to be 17.6 and %8.nol' (Fig. 7c, inset),
respectively. We further examine briefly the duliépiof Nig P /MIL-101/rGO
nanocatalyst to the decomposition reaction of hgideaand hydrazine borane. As
presented in Fig. 8, the NPt 1/MIL-101/rGO nanocatalyst shows excellent durayilit
Even after eight recycles, the catalytic activeynio significant decreased, and the H

selectivity still remains 100%.

4. Conclusions

In summary, we have reported a simple impregnataluction strategy for
immobilization of low noble-metal-containing bimii@a Ni-Pt NPs on novel
MIL-101/rGO composite. Unexpectedly, the resultaMio P /MIL-101/rGO
nanocatalyst exhibits excellent catalytic activatyd 100% H selectivity for hydrogen
evolution from hydrous hydrazine at 323 K under abfie conditions. The

corresponding TOF reaches 960.0, hwhich is much higher than most of the
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heterogeneous catalysts reported to date. The atbaeation results revealed that the
Ni-Pt NPs were successfully immobilized on MIL-1@O composite with unique
structure and high specific surface area. In amdliti NPt /MIL-101/rGO
nanocatalyst is also beneficial to high-extent debgenation of hydrazine borane
under the same condition, achieving the 5.0 egental of H within 1.9 min. What's
more, even after eight recycles of the catalytmcpss, the Fselectivity is maintained
and their initial catalytic activity shows no sifioant decrease. Such unique strategy
via synthesizing some unique structure and higltiBpesurface area composite to
support metal NPs might benefit to design a serfesovel nanocatalysts for the wide

practical application prospect in various cataljietds.
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Scheme 1 Schematic illustration for the preparation of NNP.-101/rGO catalyst.
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Highlights

Niop.oPt./MIL-101/rGO catalyst was prepared via a wet-cheinmethod.
This catalyst has a unique structure and largeifspsarface area.
Nio.oPt./MIL-101/rGO exhibits high activity, selectivity drdurability.
TOF value of 960.0 for pH, dehydrogenation was achieved at 323 K.

Activation energy for hH, dehydrogenation is estimated to 50.6 kJ-mol
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