LETTERS 2013 Vol. 15, No. 3 554–557

ORGANIC

Concise Asymmetric Synthesis of Orthogonally Protected *syn*- and *anti*-1,3-Aminoalcohols

Jae Seung Lee, Dongeun Kim, Lucia Lozano, Suk Bin Kong, and Hyunsoo Han*

Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States

Hyunsoo.han@utsa.edu

Received December 10, 2012

Novel chiral binfunctional reagents V and *ent*-V undergo asymmetric aldehyde allylation followed by Ir(I)-catalyzed enantioselective allylic amidation to give orthogonally protected *syn*- and *anti*-1,3-aminoalcohols with complete control of absolute and relative stereochemistry. The Mitsunobu reaction of the initial homoallylic alcohol products followed by Ir(I)-catalyzed enantioselective allylic amidation provides orthogonally protected *syn*- and *anti*-1,3-diamine derivatives in high yields and with excellent stereoselectivities.

The 1,3-amino alcohol motifs are common in many natural products and biologically active compounds.¹

10.1021/ol303371u © 2013 American Chemical Society Published on Web 01/14/2013

1,3-Aminoalcohols have also been used as chiral auxiliaries and ligands for asymmetric catalysis.² A vast majority of methods for their synthesis to date rely on diastereoselective reduction/addition of optically enriched β -hydroxy imine and β -amino ketone derivatives,³ as well as diastereoselective C–H amination.⁴ To our knowledge, only a few enantioselective methods are currently available, which include rhodium-catalyzed asymmetric hydrogenation of β -ketoenamides,⁵ a proline-catalyzed enantioselective Mannich reaction followed by tandem hydrogenation– enzymatic dynamic kinetic resolution,⁶ and a strategy employing proline-catalyzed α -aminoxylation and α -amination of aldehydes for the asymmetric introduction of C–O/N

 ⁽a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353–4354. (b) Wang, Y.-F.; Izawa, T.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1982, 104, 6465–6466. (c) Knapp, S. Chem. Rev. 1995, 95, 1859–1876. (d) Kempf, D. J.; Marsh, K. C.; Denissen, J. F.; McDonald, E.; Vasavanonda, S.; Flentge, C. A.; Green, B. E.; Fino, L.; Park, C. H.; Kong, X.-P.; Wideburg, N. E.; Saldivar, A.; Kati, W. M.; Sham, H. L.; Tobins, T.; Stewart, K. D.; Hsu, A.; Plattner, J. J.; Leonard, J. M.; Norbeck, D. W. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2484–2488. (e) Sham, H. L.; Zhao, C.; Li, L.; Betebenner, D. A.; Saldivar, A.; Vasavanonda, S.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. Bioorg. Med. Chem. Lett. 2002, 12, 3101–3103. (f) Carlier, P. R.; Lo, M. M.-C.; Lo, P. C.-K.; Richelson, E.; Tatsumi, M.; Reynolds, I. J.; Sharma, T. A. Bioorg. Med. Chem. Lett. 1998, 8, 487–492. (g) Shi, Z.; Harrison, B. A.; Verdine, G. L. Org. Lett. 2003, 5, 633–636. (h) Raju, B.; Mortell, K.; Anandan, S.; O'Dowd, H.; Gao, H.; Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias, J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2003, 13, 2413–2418. (i) Benedetti, F.; Norbedo, S. Chem. Commun. 2001, 203– 204.

^{(2) (}a) Lait, S. M.; Rankic, D. A.; Keay, B. A. Chem. Rev. 2007, 107, 767–796.

^{(3) (}a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518–6591. (b) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003, 125, 11276–11282. (c) Williams, D. R.; Osterhout, M. H. J. Am. Chem. Soc. 1992, 114, 8750–8751. (d) Keck, G. E.; Truong, A. P. Org. Lett. 2002, 4, 3131–3134. (e) Menche, D.; Arikan, F.; Li, J.; Rudolph, S. Org. Lett. 2007, 9, 267–270. (f) Liu, Z.-J.; Mei, Y.-Q.; Liu, J.-T. Tetrahedron 2007, 63, 855–860. (g) Edupuganti, R.; Davis, F. A. Org. Biomol. Chem. 2012, 10, 5021–5031. (h) Kennedy, A.; Nelson, A.; Perry, A. Synlett 2004, 967–970. (i) Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1985, 814–816.

^{(4) (}a) Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707–11711. (b) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825–6828. (c) Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem.—Eur. J. 2009, 15, 11078–11082. (d) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220–9221. (e) Harvey, M. E.; Nusaev, D. G.; Du Bois, J. J. Am. Chem. Soc. 2011, 133, 17207–17216. (f) Paradine, S. M.; White, M. C. J. Am. Chem. Soc. 2012, 134, 2036–2039.

⁽⁵⁾ Millet, R.; Träff, A. M.; Petrus, M. L.; Bäckvall, J. E. J. Am. Chem. Soc. 2010, 132, 15182–15184.

⁽⁶⁾ Geng, H.; Zhang, W.; Chen, J.; Hou, G.; Zhou, L.; Zou, Y.; Wu, W.; Zhang, X. Angew. Chem., Int. Ed. **2009**, 48, 6052–6054.

⁽⁷⁾ Jha, V.; Kondekar, N. B.; Kumar, P. Org. Lett. 2010, 12, 2762-2765.

bonds.⁷ Although these methods can deliver 1,3-aminoalcohols in a stereoselective fashion, they require multiple steps and/or suffer from a limited substrate scope.⁸ Furthermore, rhodium-catalyzed asymmetric hydrogenation of β -ketoenamides gives rise to only *anti*-1,3aminoalcohols. Remarkably, very efficient enantioselective methods to give orthogonally protected 1,3-aminoalcohols with complete control of their relative and absolute stereochemistry remain undeveloped. Herein we report a conceptually distinct method for the very efficient asymmetric synthesis of orthogonally protected *syn*- and *anti*-1,3-aminoalcohols, which utilizes newly developed air-stable chiral binfunctional allylation reagents V and *ent*-V (Scheme 1).

Scheme 1. Design Concept of Chiral Bifunctional Reagent V for the Asymmetric Synthesis of Orthogonally Protected *syn-* and *anti-*1,3-Aminoalcohols

Recently the Nokami group reported that, in the presence of an acid, enantioenriched tertiary homoallylic alcohol I could react with aldehydes through [3,3]-sigmatropic rearrangement to deliver homoallylic alcohols II with near-perfect chirality transfer and high E/Z-selectivity

(eq 1 in Scheme 1).^{9,10} We and others recently disclosed Ir(I)-catalyzed enantioselective allylic amidation between ethyl allyl carbonates III and diacylamine nucleophiles to give protected allylic amines IV (eq 2 in Scheme 1).^{11,12} A logical extension of these two observations would be to combine Nokami's allyl transfer reaction with the Ir(I)catalyzed allylic amidation reaction to create a new chiral bifunctional reagent V. As shown in Scheme 1, asymmetric allylation of aldehydes by V is expected to give allyl carbonates VI. Ir(I)-catalyzed allylic amidation of VI with diacylamine nucleophiles will initially generate the intermediates VII, which could undergo an intramolecular 1,5-acyl transfer reaction under the appropriate allylic amidation conditions to finally give orthogonally protected 1,3-aminoalcohols VIII and IX. If the stereochemistry of the amidation step is governed by the chiral ligands L* or ent-L* used, the presented two-step strategy can provide a most direct method for the asymmetric synthesis of orthogonally protected 1,3-aminoalcohols from the readily available aldehydes with complete control of their relative and absolute stereochemistry.

Scheme 2. Asymmetric Synthesis of Enantiomerically Pure Bifunctional Allyl Transfer Reagent V

Enantiomerically pure binfunctional reagents V and *ent*-V were conveniently prepared from commercial 3-methylbuten-2-en-1-ol in three steps (Scheme 2). Sharpless asymmetric epoxidation (AE) of 3-methylbuten-2-en-1-ol (1) by (+)-diethyl tartrate (DET) gave rise to the corresponding 2-epoxy alcohol, which was isolated as its *p*-nitrobenzoate ester 2.⁹ Enantiomerically pure 2 (*ee* > 99%) was obtained by washing crude 2 with ethyl ether. Reaction of 2 with vinylMgCl in the presence of CuBr·SMe₂ at -20 °C furnished diol 3,⁹ which upon treatment with ethyl chloroformate and pyridine transformed into V. The same reaction sequence using (–)-DET in the Sharpless AE step was used to prepare *ent*-V. Binfunctional reagents V and *ent*-V are stable at ambient temperature and can be stored without any special precautions.

⁽⁸⁾ Reference 5 works only for the terminal methyl group and gives only an (*R*)-configuration at the oxygen-substituted carbon due to the substrate specificity of the enzyme CALB used; ref 6 requires preparation of β -ketoenamides from the corresponding ketones in two steps; ref 7 requires five to six steps to prepare 1,3-aminoalcohol derivatives.

⁽⁹⁾ Shafi, S. M.; Chou, J.; Kataoka, K.; Nokami, J. Org. Lett. 2005, 7, 2957–2960.

⁽¹⁰⁾ For other similar reports, see: (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S.-I. J. Am. Chem. Soc. 1998, 120, 6609–6610.
(b) Malkov, A. V.; Kabeshov, M. A.; Barlog, M.; Kočovský, P. Chem.— Eur. J. 2009, 15, 1570–1573. (c) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2005, 7, 3577–3579. (d) Nokami, J.; Nomiyama, K.; Shafi, S. M.; Kataoka, K. Org. Lett. 2004, 6, 1261–1264. (e) Lee, C.-L. K.; Lee, C.-H. A.; Tan, K.-T.; Loh, T.-P. Org. Lett. 2004, 6, 1281– 1283. (f) Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 4990–4991.
(g) Nokami, J.; Nomiyama, K.; Matsuda, S.; Imai, N.; Kataoka, K. Angew. Chem., Intl. Ed. 2003, 42, 1273–1276. (h) Loh, T.-P.; Lee, C.-L. K.; Tan, K.-T. Org. Lett. 2002, 4, 2985–2987. (i) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168–9169. (j) Loh, T.-P.; Tan, K.-T.; Hu, Q.-Y. Angew. Chem., Int. Ed. 2001, 40, 2921–2922. (k) Nokami, J.; Anthony, L.; Sumida, S.-I. Chem.— Eur. J. 2000, 6, 2909–2913. (l) Sumida, S.-I.; Ohga, M.; Mitani, J.; Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310–1313. (m) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. Org. Lett. 2002, 4, 2389–2391.

^{(11) (}a) Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 5546–5549. (b) Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949–3952. (c) Weix, D. J.; Markovic, D.; Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944–2947.
(d) Singh, O. V.; Han, H. J. Am. Chem. Soc. 2007, 129, 774–775.
(e) Singh, O. V.; Han, H. Org. Lett. 2007, 9, 4801–4804. (f) Singh, O. V.; Han, H. Tetrahedron Lett. 2007, 48, 7094–7098.

⁽¹²⁾ For recent reviews on Ir(I)-catalyzed allylation: (a) Hartwig, J. F.; Pouy, M. J. *Top. Organomet. Chem.* **2011**, *34*, 169–208. (b) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. *Chem. Commun.* **2007**, 675–691.

 Table 1. Asymmetric Allyl Transfer Reaction between

 Aldehydes 4 and Chiral Bifunctional Reagent V

0 .		TfOH (0.2 equiv)	QH	5 O
R [∕] H [′] ≷ 4	V O OET	CH ₂ Cl ₂ , -78 °C	R	>∕O ^{//} OE
entry	R-	product	yield [%] ^a	ee [%] ^b
1 🦯	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(S)- 5a	90	99
2	- Jon	(<i>R</i>)- 5 b	78	98
3	- vr	(<i>R</i>)- 5c	82	99
4	- r	(S)- 5d	75	99
5	- r	(<i>R</i>)- 5e	74	99
6	X	(<i>R</i>)-5f	76	98
7	BnO ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(<i>R</i>)- 5 g	86	99
^a Isolated	yields. ^b Determ	ined by chiral HI	PLC.	

Acid-mediated asymmetric allylation of n-octanal by V was used to determine the optimal conditions. After screening various acids (TfOH, TMSOTf, trifluoromethanesulfonimide, 2,4-dinitrobenzenesulfonic acid, (1S)-(+)camphorsulfonic acid, p-TsOH·H2O, TiCl4, Sc(OTf)3, and $BF_3 \cdot OEt_2$) and temperatures (-78, -50, -20, and 0 °C) in methylene chloride, the reaction conditions involving 0.2 equiv of TfOH at -78 °C were determined to be optimal to give the corresponding homoallylic ether 5a in 90% reaction yield and 99% ee. A selection of aldehydes were allowed to react with I under the determined reaction conditions, and the results are shown in Table 1. The asymmetric allyl transfer reaction tolerated wide structural variations in aldehydes involving linear alkyl (entry 1), β -branched alkyl (entry 2), α -branched alkyl (entries 3 and 4), cycloalkyl (entry 5), tert-butyl (entry 6), and functionalized linear alkyl (entry 7) groups. The corresponding homoallylic alcohols 5 were obtained in good yields up to 90%, and chirality transfer was nearly perfect to give $\geq 98\%$ ee's. In all cases studied, only E-5 formed as judged by NMR analysis; the E-geometry is necessary for Ir(I)-catalyzed enantioselective allylic amidation.

To study Ir(I)-catalyzed diastereoselective allylic amidation, **5a** was subjected to the catalytic conditions involving $[Ir(COD)Cl]_2$ (2 mol %), L* (4 mol %), DBU (20 mol %), and benzyl *tert*-butyl imidodicarboxylate as a nucleophile in THF.^{11f,13} However, the desired allylic amidation reaction did not occur even under heating conditions with higher ligand loadings. Based on the premise that [Ir(dbcot)Cl]₂ could generate more robust catalysts than $[Ir(COD)Cl]_{2}^{14}$ 2 mol % $[Ir(dbcot)Cl]_{2}$ was used at rt. The ethyl allyl carbonate 5a did not react at rt, but upon raising the temperature to 65 °C, the reaction proceeded cleanly to give O-Cbz, N-Boc protected 1,3-aminoalcohol **6a** in 85% yield and with > 20:1 diastereoselectivity. On the other hand, under the same conditions, ent-5a provided the corresponding diastereomer 7a in 88% vield and with >20:1 diastereoselectivity (Table 2, entries 1) and 2). Similarly, other structurally diverse 5 and ent-5 compounds (which were prepared by using ent-V and aldehydes 4 as in Table 1) provided the corresponding O-Cbz, N-Boc protected 1,3-aminoalcohols 6 and 7, respectively, in good yields and with excellent diastereoselectivities. These results indicate that the stereochemistry of the allylic amidation is predominantly controlled by the stereochemistry of the ligand/catalyst used, and 1,5-acyl transfer takes place under the amidation conditions.

 Table 2. Ir(I)-Catalyzed Diastereoselective Allylic Amidation of Homoallylic Alcohols 5 and *ent*-5

^{*a*} Isolated yields. ^{*b*} Determined by the ¹H NMR spectrum of reaction mixtures.

To further demonstrate the synthetic utility of homoallylic alcohols **5** and *ent*-**5**, we chose to transform

^{(13) (}Cbz)₂NH, $(Boc)_2$ NH, and phthalimide were tried, but the desired allylic amidation did not occur. AcNHBoc gave rise to a mixture of amidation product and 1,5-acyl transfer product.

⁽¹⁴⁾ Spiess, S.; Welter, C.; Frank, G.; Taquet, J.-P.; Helmchen, G. Angew. Chem., Int. Ed. 2008, 47, 7652–7655.

ent-5b into the corresponding 1,3-diamine derivatives. 1,3-Diamine functionalities are a key structural element in numerous natural products and pharmacologically active compounds,¹⁵ as well as chiral ligands for asymmetric catalysis.¹⁶ Despite recent synthetic advancements, methods for the asymmetric synthesis of 1.3-diamines via enantioselective processes have been severely underdeveloped.¹⁷ Scheme 3 describes the two-step asymmetric synthesis of orthogonally protected 1.3-diamines from ent-5b. The Mitsunobu reaction between homoallylic alcohol ent-5b (entry 4, Table 2) and phthalimide furnished the corresponding homoallylic amine,^{18,18b} which upon Ir(I)catalyzed allylic amidation in the presence of L* transformed into orthogonally protected 1,3-diamine 9 in 76% overall yield and with > 20:1 dr as judged by NMR analysis. The same reaction sequence using ent-L* for the allylic amidation delivered the corresponding diastereomer 10 in 71% overall yield and with > 20:1 dr. Similarly, homoallylic alcohol ent-5b was converted into diastereomeric azides 11 and **12** by using diphenyl phosphoryl azide (DPPA)^{18c,d} in the Mitsunobu reaction in 87% and 84% overall yields, respectively, and with > 20:1 dr.

In conclusion, novel chiral bifunctional reagents V and *ent*-V, which are air-stable and can be used in a stepeconomical fashion, have been developed. The reagents undergo asymmetric aldehyde allylation followed by Ir(I)catalyzed allylic amidation to deliver orthogonally protected *syn*- and *anti*-1,3-aminoalcohols in good yields and

(16) (a) Busscher, G. F.; Retjes, F. P. J. T.; van Delft, F. L. Chem. Rev. 2005, 105, 775. (b) Kizirian, J.-C. Chem. Rev. 2008, 108, 140-205. (17) (a) Morgen, M.; Bretzke, S.; Li, P.; Menche, D. Org. Lett. 2010, 12, 4494–4497. (b) Trost, B. M.; Malhotra, S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 4190-4191. (c) Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2004, 43, 1679-1681. (d) Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem., Int. Ed. 2006, 45, 2254-2257. (e) Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem., Int. Ed. 2009, 48, 2553-2556. (f) Lu, S.-F.; Du, D.-M.; Xu, J.; Zhang, S.-W. J. Am. Chem. Soc. 2006, 128, 7418-7419. (g) Giampietro, N. C.; Wolfe, J. P. J. Am. Chem. Soc. 2008, 120, 1410-1419. (g) 12911. (h) Martjuga, M.; Shabashov, D.; Belakov, S.; Liepinsh, E.; Suna, E. J. Org. Chem. 2010, 75, 2357-2368. (i) Martjuga, M.; Belakov, S.; Liepinsh, E.; Suna, E. J. Org. Chem. 2011, 76, 2635–2647. (j) Weatherly, C. D.; Rigoli, J. W.; Schomaker, J. M. Org. Lett. 2012, 14, 1704–1707. (k) Vesely, J.; Ibrahem, I.; Rios, R.; Zhao, G.; Xu, Y.; Cordova, A. *Tetrahedron Lett.* **2007**, *48*, 2193–2198. (l) Lanter, J. C.; Chen, H.; Zhang, X.; Sui, Z. Org. Lett. 2005, 7, 5905-5907. (m) Kurokawa, T.; Kim, M.; DuBois, J. Angew. Chem., Int. Ed. 2009, 48, 2777-2779. (n) Wu, J.; Zhu, K.-C.; Yuan, P.-W.; Panek, J. S. Org. Lett. 2012, 14, 3624-3627.

Scheme 3. Asymmetric Synthesis of 1,3-Diamine Derivatives

with excellent stereoselectivities. The synthetic utility of V was further demonstrated in the three-step asymmetric synthesis of orthogonally protected 1,3-diamine derivatives. Considering the importance and prevalence of 1,3-aminoalcohol and 1,3-diamine motifs in numerous (bio)chemically active molecules, the developed strategies employing V and *ent*-V should find wide synthetic applications.

Acknowledgment. Support by the National Science Foundation (CHE 0911134) is greatly acknowledged.

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(15) (}a) Dergeron, R. J.; Feng, Y.; Weimar, W. R.; McManis, J. S.; Dimova, H.; Porter, C.; Raisler, B.; Phanstiel, O. J. Med. Chem. 1997, 40, 1475–1494. (b) Arya, D. P.; Xue, L.; Willis, B. J. Am. Chem. Soc. 2003, 125, 10148–10149. (c) Kurosawa, W.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 8112–8113. (d) Welch, K. T.; Virga, K. G.; Whittemore, N. A.; Ozen, C.; Wright, E.; Brown, C. L.; Lee, R. E.; Serpersu, E. H. Bioorg. Med. Chem. 2005, 12, 6252–6263. (e) When, P. M.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 12950. (f) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman, L. E.; Shaka, A. J. J. Org. Chem. 1999, 64, 1512–1519.

⁽¹⁸⁾ For a review, see: (a) Mitsunobu, O. Synthesis **1981**, 1–28. For the use of phthalimide in the Mitsunobu reaction, see: (b) Sen, S. E.; Roach, S. L. Synthesis **1995**, 756–758. For the use of dppa in the Mitsunobu reaction, see: (c) Cossy, J.; Willis, C.; Bellosta, V.; BouzBouz, S. J. Org. Chem. **2002**, 67, 1982–1992. (d) Chen, Q.; Huo, X.; Zheng, H.; She, X. Synlett **2012**, 23, 1349–1352.

The authors declare no competing financial interest.