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Heterogeneous Palladium-Catalyzed
Regioselective Hydrostannation of Alkenes**

Mark Lautens,* Sophie Kumanovic, and
Christophe Meyer

Hydrometalation of carbon—carbon multiple bonds is a pow-
erful method for the generation of useful organometallic com-
pounds.l'! We have previously described the nickel-catalyzed
hydroalumination and ring opening of oxabicyclic systems such
as 1 leading to the cycloalkenol 2 (Scheme 1).1?! Recently we
reported the palladium-catatyzed hydrostannation of 1,1*! lead-
ing to the organostannane 3 in which the tin occupies a distal
position. Transmetalation of the latter with methyllithium af-
forded the regioisomeric ring-opened product 4.

We were interested in extending the scope of the hydrostan-
nation reaction to a wider variety of alkenes. It is well-known
that palladium complexes catalyze the hydrostannation of al-
kynes to yield vinylstannanes."*) However, the corresponding
reaction of unactivated alkenes has not been reported to our
knowledge. This reaction should, in principle, lead to tetraalkyl-
stannanes. Although simple tetraalkylstannanes fail to undergo
efficient tin—hthium exchange, an appropriately located het-
eroatom shifts the equilibrium due to coordination to the newly
formed organolithium compound, thus allowing the exchange
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Scheme t. Hydrometalation—ring opening sequences of oxabicyclic compound 1.
RT = room temperature, DIBAL-H = diisobutylaluminum hydride.

to proceed.”®) Interestingly, 3-tributylstannyl-1-propanol has
been shown by Seebach and Meyer to be transmetalated to
3-lithioalkoxypropyllithium,[® and the dramatic influence of
the alkoxy moiety in a related process has been nicely illustrated
by Carpenter and Newman-Evans.[6®] More recently, Knochel
et al. have applied this tin-lithium exchange reaction to the
synthesis of chiral, y-functionalized secondary alcohols.!¢!

Hydrostannation of double bonds has mostly been achieved
under radical conditions by heating the compounds in neat tin
hydrides, sometimes in the presence of a radical initiator.'? Ac-
tivated alkenes including styrene react rapidly, but this reaction
lacks generality. Since addition of stannyl radicals onto a car-
bon—carbon double bond is reversible,!”? a high concentration
of tin hydride is required to achieve an efficient quench of the
initially formed f-stannyl radical. Alternatively, ultrasound-
promoted radical hydro- and hydroxystannations of activated
double bonds have also been described U7

When we attempted to perform the hydrostannation of allyl
alcohol [Eq. (a)] with the homogeneous Pd catalyst that worked

B 1.1 equiv.
/\/OH UsSnH (1.1 equiv.) BuzSn \/\/OH (a)
ca. 20°C, 0.1 M

efficiently for the conversion of 1 to 3, the corresponding 3-tri-
butylstannyl-1-propanol was produced in no more than 5%
yield (Table 1, entry 1). Similarly, other allylic alcohols failed to
give high yields of hydrostannated products in the presence of
the commonly used soluble catalyst [Pd(PPh;),].

However, we have found that this reaction can be performed
in high yield under heterogeneous catalysis. Pd;C was the first

Table 1. Hydrostannation of allyl alcohol according to Equation (a).

Entry Catalyst Solvent Time [a] Yield [%] [b]
1 [Pd(dba),} 2.5 mol%  THF ca. 12h 4
PPh, 10 mol %
2 - EtOH abs. ca. 12 h 23 [
3 Pd:C 10 mol % AcOEt ca.12h 35
4 {PA(OH),JiC [d. €] EtOH abs. 2h 50
5 [PA(OH),J/C [d] THF 1h 82

[a] Total time elapsed before workup. [b] Yield of isolated product. {c] No reaction
occurs if the solvent is degassed, or if galvinoxyl is added. Galvinoxyl = 2,6-di-tert-
butyl-a-(3,5-di-zert-butyl-4-0xo0-2,5-cyclohexadien- { -ylidene}-p-tolyloxy (free radi-
cal). [d] 10 mol% Pd from Pearlman’s catalyst (dry weight basis). [e] Addition of
galvinoxyl has no effect on this reaction.
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catalyst we examined (entry 3). but [Pd(OH),}/C (Pearlman’s
catalyst, entries 4 and 5) was more efficient at promoting the
hydrostannation of a variety of alkenes, provided that Bu,SnH
was added slowly over one or more hours. Transition metals are
known to catalyze the decomposition of tributyltin hydride to
hexabutyldistannane and molecular hydrogen.l’*! and this was
the main side reaction we had to overcome. The major side
product of the reaction is Bu,Sn,, which is easily removed by
column chromatography.

The catalytic influence of palladium hydroxide is demonstrat-
ed by the fact that in its absence, 3-tributylstannyl-1-propanol is
produced in only 23 % yield, because of an inefficient radical
pathway (entry 2). The latter pathway can be completely inhib-
ited by degassing the solvent or by adding radical scavengers
such as galvinoxyl. THF was the optimum solvent for this het-
erogeneously catalyzed hydrostannation (entry 5), although
ethanol gave good yields as well.

The reaction has been successfully applied to a wide variety of
alkenes (Table 2). The allylic alcohols can be either secondary or

Table 2. Heterogeneously catalyzed hydrostannation of substituted alkenes.

Entry Alkene Product [a] Yield
[%] [b]
HO OH
1 )\/ /K/\ R=Ph %
R = A Sy, R=2funyl 92
HO x HO SnBuy
2 94 [¢]

3 SnBuz ;=1 91 [d]
HO/\(v)/\ /\(/)/\/
n HO n=_ 80

n
OFEt BusSn OEt
4 /Y \/\r 85
OFt OFEt
N
5 \/\COOH Bu3Sn \/\/COOH 78
SnBugy
6 X=CN 84
> x « X = N-phthaloyl 60
7 R'=H.R?—CO.By 89
i 2_
N s N e ﬁx ng Bn o 23

R'=H.R*=COPh 88

BusSn \)\/OH 90

SnBu,

Ph OH

SnBug

[a] Conditions: {.5 equiv Bu,SnH. 10 mol% Pd from Pearlman’s catalyst. THF
(0.1M). room temperature. 1 h. [b] Yields of isolated products. [c] Reaction per-
formed in absolute ethanol. [d] An 84:1 ratio of the linear and branched isomers
was observed.
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tertiary (entries 1 and 2). The presence of a coordinating group
located at the allylic position is not required for the reaction to
proceed, since 3-buten-1-o0l, 10-undecen-1-ol (entry 3), acrolein
diethyl acetal (entry 4), and vinylacetic acid (entry 5) are re-
gioselectively hydrostannated in good yields. In the case of
acrylonitrile (entry 6), both heterogeneously and previously
reported homogeneously catalyzed hydrostannations afford the
% adduct.®® confirming that the reaction follows a polar path-
way. N-Vinylphthalimide (entry 6) is hydrostannated in accept-
able yield, and the resulting compound is of significant interest,
since x-phthalimidostannanes can function as x-aminostannane
equivalents in Stille-type coupling reactions.!”’

Allyl amine derivatives (entry 7) are also hydrostannated in
excellent yields under the same conditions, which provides an
efficient route to y-aminostannanes.

1.1-Disubstituted alkenes react efficiently (entry 8), but unac-
tivated 1.2-dialkyl-substituted alkenes give low yields of hy-
drostannated products under these conditions. However, aryl
substituted alkenes react smoothly, leading to benzylstannanes
(entries 9 and 10). Interestingly, in the case of 1,2-dihydronaph-
thalene, we have found that radical-initiated addition of Bu,SnH
proceeds with the opposite regiochemistry in 88 % yield.

In conclusion, we have shown that a wide variety of alkenes
can be efficiently hydrostannated under heterogeneous condi-
tions, providing easy access to organostannanes that are not
easily prepared by other routes. This reaction can also be com-
plementary to the radical-based hydrostannation reactions in
terms of the regioselectivity of the addition. Further develop-
ments on this reaction, especially in the design of diastereo- and
enantioselective hydrostannations, are currently underway.

Experimental Procedure

General procedure for the heterogeneous. palladium-catalyzed hydrostannations of
alkenes: Tributyltin hydrde (1.5 mmol) was added over 1 hour by syringe pump to
a well-stirred mixture of the alkene {1 mmol) and [Pd(O H),};C (Peariman’s catalyst.
53 mg. 0.1 mmol of Pd) in THF (10 mL). The reaction mixture was stirred for an
additional hour and then filtered through a pad of celite. Flash chromatography on
silica gel (hexanes:ethyl acetate mixtures as eluent) gave the product.
1-Phenyl-3-(tributylstannyl)propan-1-ol (entry 1): Purified by flash chromatogra-
phy (hexanes:ethyl acetate 100:0 to 10:1). colorless oil (yield 96%). '"H NMR
(400 MHz. CDCl,) ¢ =7.36-7.24 (m. 5H). 4.53 (m. 1H). 1.96-1.83 (m. 3H).
1.52-1.20 (m. 12H).0.89-0.59 (m. 17H): '3C NMR (100 MHz. CDCl;) é = 144.5.
128.3. 1274, 1259, 77.7. 36.2. 29.2. 27.4,. 13.7. 8.80. 4.20.
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