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The aldol reaction is one of the most fundamental carbon–
carbon bond-forming reactions. A cross-aldol reaction
between two different aldehydes, in principle, provides the
most straightforward step- and redox-economical[1] access to
polyketides.[2, 3] Numerous modern aldol methods,[4] however,
utilize ketones, thioesters, esters, and other carboxylic acid
derivatives as donors to circumvent the problems inherent to
aldehyde–aldehyde cross-aldol reactions. Thus, additional
multistep transformations of aldol products, including pro-
tection and redox processes, are required to generate b-
hydroxy-protected aldehydes. In the cross-aldol reaction
between two different aldehydes, chemoselective activation
of one aldehyde as a donor and the other aldehyde as an
acceptor is difficult, and often affords mixtures of homo- and
heteroaldol products (Scheme 1a). As a state-of-the-art

methodology, several organocatalytic enantioselective direct
aldehyde–aldehyde cross-aldol reactions have been devel-
oped,[5] but enamine catalysis is realized simply based on the
inherent steric and/or electronic bias between the two differ-
ent aldehydes. Cross-aldol reactions that override the bias, for
example, propanal as an acceptor and other sterically more
hindered aldehydes as donors, are extremely difficult.[6] A
method to generate an aldehyde-derived enolate from a non-
carbonyl precursor through an orthogonal activation mode[7–9]

would provide an alternative and complementary approach to
obtaining aldehyde–aldehyde cross-aldol products (Sche-
me 1b). Herein, we report a rhodium-catalyzed one-pot
isomerization/cross-aldol sequence using primary allylic and
homoallylic alcohol borates as well as primary allylic and
homoallylic alcohols as nucleophile precursors. The isomer-
ization and cross-aldol reaction proceeds at ambient temper-
ature, even when using readily enolizable aldehydes, such as
propanal, as acceptors.

Preformed silyl enol ethers derived from aldehydes have
been utilized to avoid the chemoselectivity problem in the
aldehyde–aldehyde cross-aldol process, as demonstrated by
Yamamoto and co-workers,[10] Denmark and co-workers,[11]

and others.[12] In contrast, the use of aldehyde-derived enol
boranes is rare because they are unstable and prone to
polymerization.[13] Considering the synthetic utility of other
enol boranes derived from ketones and carboxylic acid
derivatives,[14] the development of a new method to utilize
various aldehyde-derived enol boranes is highly desirable.

To avoid handling unstable aldehyde-derived enol bor-
anes, we first investigated the in situ generation of aldehyde-
derived enol boranes through transition-metal-catalyzed
isomerization of triallyloxyboranes[15] in the presence of
acceptor aldehydes. Optimization studies of the one-pot
isomerization/cross-aldol sequence using 2-bromobenzalde-
hyde (1a) and triallyloxyborane (2a) are summarized in
Table 1. With [{Rh(cod)Cl}2] (1.25 mol %, 2.5 mol% of [Rh];
cod = 1,5-cyclooctadiene), various phosphine ligands were
screened (entries 1–12). Monodentate phosphines did not
afford the aldol adduct (entries 1–3). Among the bidentate
diarylphosphines (entries 4–7), only dppf gave the desired
product, albeit in poor yield (entry 7). Electronic and steric
modifications of the ferrocene-based ligand effectively
improved the reactivity of the rhodium catalysts (entries 8–
10), and dippf, bearing PiPr2 units, gave the best results, thus
giving the product 3a in 99% yield and 94:6 d.r. at room
temperature after 23 hours (entry 8). In contrast, the steri-
cally more hindered dtbpf bearing PtBu2 units had poor
reactivity (entry 10). We also examined other bidentate alkyl
phosphines, but the desired reaction did not proceed
(entries 11 and 12). Other rhodium sources, including the

Scheme 1. Cross-aldol reaction between two different aldehydes:
a) conventional method starting from two aldehydes, and b) this work
proceeding through the chemoselective generation of aldehyde eno-
lates from primary allylic and homoallylic alcohols and allyloxy and
homoallyloxyboranes.
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cationic [Rh(cod)2BF4], had less satisfactory reactivity
(entries 13–16). In entries 17–20, several ruthenium and
iridium complexes were also screened,[16] but none of them
gave the desired product at room temperature. Thus, the
[{Rh(cod)Cl}2] in combination with the dippf ligand was
selected as the optimal catalyst.

The substrate scope of the isomerization/cross-aldol
sequence is summarized in Table 2.[17] Because nonprotected
b-hydroxy aldehydes are generally unstable and partially
decompose during the purification using silica gel column
chromatography, the yield of the isolated products was
determined after transformation into stable compounds,
such as the dimethylacetal using PPTS/MeOH or the 1,3-
diol using NaBH4. High syn selectivity was observed for the
reaction shown in entries 1–11 using 2a and various aryl and
heteroaryl aldehydes (1a–1k ; > 95:5–90:10 d.r.). Substituents
at the ortho, meta, and para positions on the aromatic ring of
aldehydes were compatible, and even the sterically hindered
2,6-disubstituted aldehyde 1g (entry 7) and the less electro-
philic aldehyde 1h bearing two electron-donating MeO-
groups at the ortho and para positions (entry 8) gave the
expected aldol adducts without problem. The results using the
substituted allyloxy boranes 2b–2d are summarized in
entries 12–15. The allyloxyborane 2b as an E/Z-mixture,

(Z)-2c, and (Z)-2d showed good reactivity, thus giving cross-
aldol adducts in 84–93 % yield with good syn selectivity
(entries 12, 14, and 15). In contrast, (E)-2c had much lower
reactivity, possibly because of slow isomerization, and the
product was obtained in only 57% yield after 48 hours
(entry 13) with a diastereoselectivity similar to that obtained
with (Z)-2 c. The present rhodium-catalyst was also applicable
to enolizable aliphatic aldehydes (entries 16–19). Although
the syn selectivity was somewhat decreased, the desired cross-
aldol adduct was obtained chemoselectively. In entry 19,
propanal chemoselectively reacted as an acceptor and the
cross-aldol adduct 3r was obtained in 71 % yield. In entry 19,
the homoaldol adduct derived from propanal was not
detected, thus indicating the synthetic utility of the present
method based on the orthogonal activation of allyloxybor-
anes. Because the present reaction was performed under mild
reaction conditions, that is, at room temperature in the
absence of a strong base, the chiral aldehyde 1p was
successfully utilized without racemization to give 3s as the
major isomer in greater than 99 % ee (Scheme 2). Although
C2/C3 diastereoselctivity (3s + 3u)/(3t+3 v) was modest,
good C3/C4 diastereoselctivity (3s + 3t)/(3u+3v) was

Table 1: Optimization studies.

Entry Ligand Metal source [x mol%] t
[h]

syn/
anti[a]

Yield
[%][a]

1 PPh3
[b] [{Rh(cod)Cl}2] (1.25) 36 n.d. 0

2 PCy3
[b] [{Rh(cod)Cl}2] (1.25) 36 n.d. 0

3 PiPr3
[b] [{Rh(cod)Cl}2] (1.25) 36 n.d. 0

4 dppe [Rh(cod)Cl]2 (1.25) 36 n.d. 0
5 dppp [{Rh(cod)Cl}2] (1.25) 36 n.d. 0
6 rac-binap [{Rh(cod)Cl}2] (1.25) 36 n.d. 0
7 dppf [{Rh(cod)Cl}2] (1.25) 36 n.d. <5
8 dippf [{Rh(cod)Cl}2] (1.25) 23 94:6 99
9 dcypf [{Rh(cod)Cl}2] (1.25) 36 91:9 85
10 dtbpf [{Rh(cod)Cl}2] (1.25) 36 n.d. <5
11 bdtbpb [{Rh(cod)Cl}2] (1.25) 36 n.d. 0
12 dcypb [{Rh(cod)Cl}2] (1.25) 36 n.d. 0
13 dippf [Rh(PPh3)3Cl] (2.5) 23 91:9 77
14 dippf [{Rh(C2H4)Cl}2] (1.25) 23 92:8 89
15 dippf [Rh(cod)2]BF4 (2.5) 36 n.d. 0
16 dippf [Rh(acac)(cod)] (2.5) 36 n.d. 0
17 dippf [{Ru(p-cymene)Cl2}2] (1.25) 36 n.d. 0
18 dippf [Ru(PPh3)3Cl2] (2.5) 36 n.d. 0
19 dippf [RuHCl(CO)(PPh3)3] (2.5) 36 n.d. 0
20 dippf [{Ir(cod)Cl}2] (1.25) 36 n.d. 0

[a] Determined by 1H NMR analysis of the crude reaction mixture.
[b] 5 mol% of ligands were utilized. acac =acetylacetonate, binap = 2,2’-
bis(diphenylphosphino)-1,1’-binaphthyl, cod =1,5-cyclooctadiene.

Table 2: Rhodium-catalyzed isomerization/cross-aldol reaction
sequence with triallyloxyboranes.[a]

Entry R 1 2 t
[h]

3 syn/
anti[b]

Yield
[%][c]

1 2-BrC6H4 1a 2a 23 3a 94:6 99
2 3-BrC6H4 1b 2a 36 3b 93:7 72
3 4-BrC6H4 1c 2a 36 3c 93:7 83
4 3-ClC6H4 1d 2a 36 3d 91:9 95
5 4-FC6H4 1e 2a 36 3e 93:7 87
6 4-NO2C6H4 1 f 2a 36 3 f 94:6 90
7 2,6-Cl2C6H3 1g 2a 36 3g >95:5 85
8 2,4-(MeO)2C6H3 1h 2a 36 3h 90:10 78
9 Ph 1 i 2a 36 3 i 90:10 81
10 2-naphthyl 1 j 2a 36 3 j 90:10 75
11 2-furyl 1k 2a 36 3k 94:6 60
12 Ph 1 i 2b 24 3 l 90:10 93
13 Ph 1 i (E)-2c 48 3m 88:12 57
14 Ph 1 i (Z)-2c 12 3m 87:13 84
15 Ph 1 i (Z)-2d 12 3n 86:14 89
16 n-pentyl 1 l 2a 27 3o 85:15 73
17 PhCH2CH2 1m 2a 36 3p 84:16 90
18 cyclohexyl 1n 2a 32 3q 74:26 62
19 Et 1o 2b 24 3r 75:25 71[d]

[a] Reaction was run using 0.4 mmol of 1 and 2 in 1,4-dioxane (0.2m)
under Ar at ambient temperature. [b] Determined by 1H NMR analysis of
the crude reaction mixture. [c] Yield of isolated product was determined
after conversion into either the dimethylacetal with cat. PPTS/MeOH or
the 1,3-diol with NaBH4, and purification by silica gel column
chromatography. [d] Yield of the isolated b-hydroxy aldehyde form after
careful purification by silica gel column chromatography. PPTS= pyr-
idinium para-toluenesulfonate.
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observed. The control experiment shown in Scheme 3 using 3-
phenylpropanal and propanal resulted in no reaction. Neither
the homo- nor heteroaldol adduct was observed. Thus, it is
clear that the present Rh/dippf catalyst does not activate the

aldehyde as a donor, but chemoselectively generates alde-
hyde-derived enolates from allyloxyboranes. The Rh/dippf
catalyst could promote the isomerization of allyloxyboranes
into enol boranes through a 1,3-hydride shift via a p-allyl
rhodium complex,[15] and the aldol reaction of enol boranes
proceeded via a cyclic transition state to afford the syn-aldol
adducts.

The present Rh/dippf catalyst was also directly applicable
to free primary allylic alcohols.[18] As shown in Table 3, the
isomerization/cross-aldol sequence proceeded smoothly at
room temperature, and products were obtained in 68–90%
yield albeit in somewhat lower syn selectivity (86:14–75:25
d.r.) than that using allyloxyboranes. The previously reported
methods for the isomerization/cross-aldol sequence[9] were
only applied to secondary allylic alcohols, and the current
protocol is the first example of an one-pot isomerization/
cross-aldol sequence with primary allylic alcohols. To com-
pare the reactivity and diastereoselectivity of the present
rhodium catalyst with other systems, we briefly investigated
the reaction with secondary allylic alcohols (5). As summar-
ized in entries 6–10, the cross-aldol products, b-hydroxy
ketones 6, were obtained in 88:12–81:19 d.r. and 96–87%
yield at room temperature after 10–15 hours. In the case of
using allylic alcohols as precursors, isomerization of allylic
alcohols would afford either the enol[19] or rhodium enolate[20]

intermediate. Based on the control experiment shown in
Scheme 2, the enol or rhodium enolate intermediate should
directly react with acceptor aldehydes before undesirable
tautomerization or protonation to give the aldehydes,[21]

which are unreactive as donors under the reaction conditions.

To further expand the synthetic utility of the Rh/dippf
catalyst, we investigated the homoallyloxyborane 7 and
primary homoallylic alcohol 8 as donors. The isomerization
of the carbon–carbon double bond from the remote position,
possibly by consecutive 1,3-hydride shift via the p-allyl
rhodium complex, proceeded without problem, and the
cross-aldol adduct 3m was obtained in good yield and
syn selectivity after 24 hours (Scheme 4). It is noteworthy
that the present protocol was not restricted to allyloxyboranes
and allylic alcohols. Additional investigations into using other
alkoxyboranes and alcohols bearing a remote carbon–carbon
double bond are ongoing.

Scheme 2. Rhodium-catalyzed isomerization/cross-aldol sequence
using the chiral aldehyde 1p.

Scheme 3. Negative control experiment using two different aldehydes.

Scheme 4. The isomerization/cross-aldol sequence using the homo-
allyloxyborane 7 and homoallylic alcohol 8.

Table 3: Rhodium-catalyzed isomerization/cross-aldol sequence with
primary allylic alcohols 4 and secondary allylic alcohols 5.[a]

Entry R 1 R’ R’’ 4
or
5

t
[h]

3
or
6

syn/
anti[b]

Yield
[%]

1 Ph 1 i H H 4a 8 3 i 86:14 73[c]

2 PhCH2CH2 1m H H 4a 24 3p 75:25 72[c]

3 Ph 1 i Me H 4b 22 3 l 83:17 90[c]

4 Ph 1 i (Z)-Et H 4c 25 3m 82:18 73[c]

5 Ph 1 i (Z)-Pr H 4d 22 3n 83:17 68[c]

6 Ph 1 i H Me 5a 10 6a 86:14 90[d]

7 n-pentyl 1 l H Me 5a 11 6b 83:17 96[d]

8 Ph 1 i H Et 5b 14 6c 86:14 91[d]

9 Ph 1 i H n-pentyl 5c 15 6d 88:12 95[d]

10 Ph 1 i (E)-Me Me 5d 13 6e 81:19 87[d]

[a] Reaction was run using 0.4 mmol of 1 and 2.0 mol equiv of 4 or 5, in
1,4-dioxane (0.2m) under Ar at ambient temperature. [b] Determined by
1H NMR analysis of the crude reaction mixture. [c] Yield of isolated
product was determined after conversion into either dimethylacetal with
cat. PPTS/MeOH or 1,3-diol with NaBH4, and purification by silica gel
column chromatography. [d] Yield of isolated b-hydroxy ketone form after
purification by silica gel column chromatography.
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In summary, we developed an alternative approach to
cross-aldol adducts derived from two different aldehydes. A
Rh/dippf catalyst promoted the isomerization of primary
allyloxy and homoallyloxyboranes as well as primary allylic
and homoallylic alcohols at ambient temperature, chemo-
selectively, thus affording aldehyde-derived enolates in situ.
The isomerization/cross-aldol sequence proceeded in one pot,
thereby giving cross-aldol adducts in greater than 95:5–74:26
syn selectivity and 99–57 % yield using allyloxy- and homo-
allyloxyboranes. Studies towards enantioselective variants
using either a chiral rhodium catalyst[22] or chiral alkoxybor-
anes as well as applications to consecutive cross-aldol
reactions for 1,3-polyol synthesis are actively ongoing.
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mol equiv of 2a, the Rh/dippf catalyst gave product 3 i in 51%
yield with 83:17 d.r. after 36 h.

[18] Re-screening of metal sources and ligands revealed that the Rh/
dippf combination was also important for the direct use of
primary allylic alcohols at room temperature in the absence of
base.

[19] Rhodium-catalyzed enol formation from primary allylic alcohols
through a 1,3-hydride shift: S. H. Bergens, B. Bosnich, J. Am.
Chem. Soc. 1991, 113, 958.

[20] Transition-metal-enolate formation from secondary allylic alco-
hols, see Refs. [9a,g], and [9h].

[21] Although there are many transition-metal catalysts for isomer-
ization of primary allylic alcohols, applications of some of those

catalysts in the present isomerization/cross-aldol sequence were
not successful possibly because enols and/or metal enolates were
rapidly converted into aldehydes. For isomerization of allylic
alcohols into aldehydes followed by organocatalytic C�C bond
formation, see: a) A. Quintard, A. Alexakis, C. Mazet, Angew.
Chem. 2011, 123, 2402; Angew. Chem. Int. Ed. 2011, 50, 2354. For
a review on isomerization of primary allylic alcohols into
aldehydes, see: b) L. Mantilli, C. Mazet, Chem. Lett. 2011, 40,
341; c) K. Tani, Pure. Appl. Chem. 1985, 57, 1845.

[22] Preliminary trials of enantioselective reaction using primary allyl
alcohols and some ferrocene-based chiral phosphine ligands,
such as Josiphos and Taniaphos, resulted in poor yield and/or
stereoselectivity.
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Rhodium-Catalyzed Cross-Aldol
Reaction: In Situ Aldehyde-Enolate
Formation from Allyloxyboranes and
Primary Allylic Alcohols

Dip in! A Rh/dippf catalyst generates
aldehyde-derived enol boranes at ambi-
ent temperature by isomerization of
allyloxy- and homoallyloxyboranes. A one-
pot isomerization/cross-aldol sequence

provides aldehyde–aldehyde adducts in
good yield with syn selectivity. Direct use
of primary allylic and homoallylic alcohols
was also achieved.
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