Synthesis of α-tocopherol and naphthotocopherol analogs with a carboxyl group in the side chain

A. Yu. Spivak, O. V. Knyshenko, M. I. Mallyabaeva, and V. N. Odinokov*

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prosp. Oktyabrya, 450075 Ufa, Russian Federation Fax: +7 (347 2) 31 2750. E-mail: ink@anrb.ru

On the basis of ozonolysis of short-chain α -tocopherol and naphthotocopherol analogs with a terminal isopropylidene group in the side chain, a general approach to the synthesis of 6-hydroxy-2,5,7,8-tertramethylchroman-2-yl- and 6-hydroxy-2,5-dimethyl-3,4-dihydro-2*H*-naphtho[1,2-*b*]pyran-2-ylpropionic and -acetic acid derivatives, which are hydrophilic tocopherol analogs, was proposed.

Key words: α -tocopherol, naphthotocopherol, carboxylic acids, aldehydes, enol acetates, ozonolysis.

3,4-Dihydro-2*H*-benzopyran-2-ylalkanoic acids are known as the main water-soluble metabolites of Vitamin E (see Refs 1–3) and are of interest for their biological activities.^{4–12} They are also used in the enantioselective synthesis of optically active tocopherols and tocotrienols.^{13–15} Racemic 6-hydroxy-2-carboxy-2,5,7,8-tetramethylchromane (1) known as Trolox, its homolog 2, and their ammonium, phosphonium, and sulfonium salts are efficient water-soluble antioxidants and cardioprotectors.^{4,5} Racemic acids 1 and 2 were used to synthesize compounds with combined pharmacological properties useful in the therapy of the pathological disorders caused by peroxide radicals. The compounds obtained exhibited high antioxidant,⁶ antitumor,⁷ antiinflammatory,^{8,9} and antiarrhythmic activities.¹⁰

Of particular interest are the recently discovered water-soluble D- α -tocopherol and D- γ -tocopherol metabolites and their racemic analogs, 2-carboxyethyl-6-hydroxy-2,5,7,8-tetramethylchromane (3) (α -CEHC) and 2-carboxyethyl-6-hydroxy-2,7,8-trimethylchromane (4) (γ -CEHC). Unlike tocopherol, these acids were found to exhibit a sodium uretic action, irrespective of the configuration of C(2), apparently, due to their interaction with proteins as endogenic ligands.³ The CEHC metabolites show a high antioxidant activity *in vitro*.^{11,12}

The unique properties found for acids 1-4 aroused interest in their use in biology and medicine. However, known synthetic routes to these compounds are restricted to two approaches based on condensation of methylated hydroqiunones with methyl vinyl ketone¹³⁻¹⁹ or γ -methyl- γ -vinylbutyrolactone.^{1,2,20}

Recent publications²¹ report a high antioxidant activity of (2RS)-6-hydroxy-2,5-dimethyl-2-(4RS, 8RS, 12trimethyltridecan-1-yl)-3,4-dihydro-2*H*-naphtho[1,2-*b*]pyran (naphthotocopherol), which was 6.9 times as high as the activity of α -tocopherol. In this connection, it is pertinent to synthesize ω -carboxyl-containing analogs of naphthotocopherol, in particular, 6-hydroxy-2,5-dimethyl-3,4-dihydro-2*H*-naphtho[1,2-*b*]pyran-2-ylacetic and -propionic acids (**5** and **6**).

Results and Discussion

The condensation of trimethylhydroquinone (TMHQ) or menadiol acetate (AMD) with linalool (7) on treatment with (+)-camphor-10-sulfonic acid (CSA) or TsOH gave compounds **8**, **11** (their yield was markedly higher

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 299-304, February, 2006.

1066-5285/06/5502-0306 © 2006 Springer Science+Business Media, Inc.

with CSA). The general approach to the synthesis of chroman-2-yl- and benzochroman-2-yl-substituted carb-oxylic acids, hydrophilic analogs of α -tocopherol and naphthotocopherol, that we developed is based on ozo-

nolysis of the *O*-esters of chromanol **9** and benzochromanol **11** and *O*-ether of chromanol **10** having an unsaturated side chain (Scheme 1). By ozonolysis under reported conditions,²² olefins **9–11** were converted into

Scheme 1

R = H (8), Ac (9, 12, 15, 18, 21, 24), Bn (10, 13, 16, 19, 22, 25)

Reagents and conditions: *a*. TMHQ/CSA, $n-C_8H_{18}$; *b*. Ac₂O/Py; *c*. BnCl/K₂CO₃, DMF; *d*. AMD/CSA, $n-C_8H_{18}$; *e*. O₃/NaHCO₃, CH₂Cl₂—MeOH (10 : 1), -70 °C, Me₂S; *f*. CrO₃/H₂SO₄/Me₂CO; *g*. AgNO₃/NaOH, EtOH; *h*. Ac₂O/AcOK.

aldehydes 12–14. The subsequent oxidation of acetyl derivatives 12 and 14 with the Jones reagent and oxidation of benzyl ether 13 with an alkaline solution of silver nitrate resulted in acids 15, 17, and 16, respectively.

To prepare noranalogs of acids 15-17, their precursors, aldehydes 12-14, were converted into enol acetates 18-20, whose subsequent ozonolysis gave aldehydes 21-23, which were further oxidized into the target acids 24-26.

According to ¹H and ¹³C NMR data, enol acetates **18–20** were mixtures of E/Z isomers. Their ¹H NMR spectra exhibit doublets of triplets for the H(2') protons in the Z isomers at δ 5.05–5.14 (J = 7.8 and 6.4 Hz) and in the E isomers at δ 5.52–5.61 (J = 12.0 and 8.3 Hz). From the ratio of the integral intensities of these signals, it follows that the E- and Z-isomers are formed in 2 : 1 ratio. In the ¹³C NMR spectra of enol acetates **18–20**, the signals of the C(1'), C(2'), and C(3') atoms of the E-isomers are observed in a somewhat lower field ($\Delta\delta$ 3.2, 1.5, and 1.2.) than the corresponding signals of Z-isomers.

The ¹H NMR spectra of some of the obtained compounds with functional groups located closely to the C(2) chiral center (**22–24**) show the diastereotopic nature of the protons of the H₂C(1') groups. As a consequence, the spectrum of, *e.g.*, acid **24** contains a signal for two protons of the H₂C(1') group as an AB system at δ 2.43 and δ 2.53 (²J = 12.3 Hz). The spectra of aldehydes **22** and **23** also show the diastereotopic protons at C(1') as doublets of an AB-system due to additional vicinal splitting on the aldehyde-group proton. Due to the spin-spin coupling with the diastereotopic H₂C(1') groups, the signals of the aldehyde protons are manifested as a doublet of doublets at $\delta \approx 10$ (J = 3.4 and 2.5 Hz for compounds **22**, J = 3.2 and 2.0 Hz for compound **23**).

To conclude, we have developed syntheses of α -tocopherol and naphthotocopherol analogs with an ω -carboxyl group, which are of considerable interest for medicine, on the basis of available monoprenylated chromanols and benzochromanols using ozonolysis at the two key steps.

Experimental

IR spectra were recorded on a Specord 75-IR spectrophotometer (in thin layer), and UV spectra were measured on a Specord M-40 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 instrument (operating at 300.13 MHz for ¹H and at 75.47 MHz for ¹³C) in CDCl₃ or CD₃OD. The chemical shifts (δ) are given relative to Me₄Si (internal standard). GLC analysis was carried out on a Chrom-5 chromatograph, column 2400×4 mm, SE-30 (5%) on Chromaton N-AW-DMCS as the stationary phase, thermostat temperature 50–300 °C (8 °C min⁻¹), and helium as the carrier gas. TLC was carried out using Silufol UV-254 and Sorbfil in a 1 : 1 *n*-hexane—EtOAc or 1 : 1 CHCl₃—MeOH system; the plates were visualized with phosphomolybdic acid and 4-methoxybenzaldehyde. Commercial TMHQ and CSA (Fluka) were used.

(2RS)-6-Acetoxy-2,5,7,8-tetramethyl-2-(3-oxopropyl)chromane (12). Linalool (7) (0.40 g, 2.6 mmol) was added dropwise (Ar) to a boiling suspension of trimethylhydroquinone (0.4 g, 2.6 mmol) and CSA (0.061 g, 0.26 mmol) in anhydrous n-octane (3 mL). The reaction mixture was kept at reflux for 3 h, cooled to ~20 °C, and poured into a saturated solution of NaHCO₃ (30 mL). The product was extracted with EtOAc, washed with brine, and dried with MgSO₄. The filtrate was concentrated, and the residue was chromatographed on a column with SiO₂ (16 g), using first *n*-hexane and then a 10 : 1 *n*-hexane—EtOAc mixture as eluents to give 0.57 g of compound 8 as a mixture with its cyclic isomer.²³ The condensation products were dissolved in anhydrous pyridine (5.6 mL), then Ac₂O (4.3 mL) was added with stirring, and the mixture was kept for 0.5 h at $\sim 20 \,^{\circ}$ C, poured into ice water (15 mL), and extracted with EtOAc. The solution was washed with 3 M HCl, a saturated solution of NaHCO₃, and H₂O and dried with MgSO₄. Removal of the solvent gave 0.63 g of an oily compound (according to GLC, the product contained 75% compound 9 (cf. Ref. 23), which corresponds to 0.47 g (1.43 mmol)). The material was dissolved in a 10 : 1 CH₂Cl₂-anhydrous MeOH mixture (4.4 mL), then NaHCO₃ (0.21 g) was added, and an oxygen-ozone mixture was passed through the solution with stirring (-70 °C) at a rate of 30 L h^{-1} for 3 min (1.45 mmol O₃ with an ozone generator productivity of 29 mmol O_3 h⁻¹). The reaction mixture was purged with Ar, then Me₂S (1.6 mL) was added at -40 °C, and the mixture was warmed-up to ~20°C, stirred for 5 h, and concentrated in vacuo. The residue was diluted with water (10 mL) and extracted with EtOAc. The extract was washed with brine, dried with MgSO₄, and concentrated. The residue was chromatographed on a column with SiO_2 (12 g) using first a 10:1 and then a 3:1 *n*-hexane—EtOAc mixture as the eluent to give 0.35 g (44% based on 7) of aldehyde 12 identical (according to IR, UV, and ¹H and ¹³C NMR data) to the sample described previously.23

(2RS)-6-Benzyloxy-2,5,7,8-tetramethyl-2-(3-oxopro**pyl)chromane (13).** The reaction of trimethylhydroquinone (4.0 g, 26 mmol), linalool (7) (4.01 g, 26 mmol), and CSA 0.60 g (2.6 mmol) gave, as described above, a condensation product (6.06 g; according to GLC, the content of 8 was 75%), which was dissolved in anhydrous DMF (42.4 mL). Calcined K₂CO₃ (7.68 g) and benzyl chloride (6.7 g, 52.9 mmol) were added successively. The reaction mixture was kept for 38 h at ~ 20 °C. poured into ice water, and extracted with EtOAc. The usual workup and column chromatography on SiO₂ gave the benzylation product (4.59 g; the content of 10 was 75%, or 3.44 g, 9.09 mmol). The material was dissolved in a 10:1 CH₂Cl₂—anhydrous MeOH mixture (33 mL), NaHCO₃ (1.53 g) was added, and an ozone-oxygen mixture was passed through the solution with stirring (-70 °C) at a flow rate of 30 L h⁻¹ for 19 min (9.1 mmol O₃ with an ozone generator productivity of 29 mmol O_3 h⁻¹). The mixture was worked-up as described for the synthesis of aldehyde 12. to give 2.64 g (29% based on 7) of aldehyde 13 (oily substance).* IR, v/cm⁻¹: 1710 (C=O), 1210, 1060, 1080 (C–O). UV (MeOH), λ_{max}/nm (ϵ): 270 (2122); 289

^{*} Since aldehydes 13 and 23 were not obtained in the analytically pure state, no elemental analysis data are presented for these compounds.

(1899). ¹H NMR, δ : 1.30 (s, 3 H, C(2)Me); 1.70–2.15 (m, 4 H, H(3), H(1')); 2.18, 2.24, 2.30 (all s, 9 H, MeC_{arom}); 2.50–2.78 (m, 4 H, H(4), H(2')); 4.75 (s, 2 H, OCH₂Ph); 7.35–7.70 (m, 5 H, H_{Ph}); 9.83 (t, 1 H, HCO, J = 1.0 Hz). ¹³C NMR, δ : 11.73, 11.84, 12.70 (MeC_{arom}); 20.34 (C(4)); 23.34 (MeC(2)); 31.28, 31.74 (C(3), C(2')); 38.38 (C(1')); 73.51 (OCH₂Ph); 74.52 (C(2)); 117.10, 122.75, 125.96, 127.98 (C(4a), C(5), C(7), C(8)); 127.53, 127.63 (C(2)Ph–C(6)Ph); 137.71 (C(1)Ph); 147.16 (C(8a)); 148.26 (C(6)); 202.38 (CHO).

(2RS)-6-Acetoxy-2-(2-carboxyethyl)-2,5,7,8-tetramethylchromane (15). Jones reagent (1.2 mL, 3.36 mmol) (prepared from 1.33 g of CrO₃, 3.8 mL of H₂O, and 1.2 mL of conc. H₂SO₄) was added dropwise with vigorous stirring at 0 °C to a solution of aldehyde 12 (0.86 g, 2.83 mmol) in acetone (20 mL), and the mixture was stirred for 2 h at ~20 °C and extracted with EtOAc. The extract was washed with brine, dried with MgSO₄, and concentrated. The residue was chromatographed on a column with SiO₂ (14 g) using methanol as the eluent to give 0.62 g (68%) of acid 15, m.p. 149–150 °C (cf. Ref. 24). Found (%): C, 67.71; H, 7.45. C₁₈H₂₄O₅. Calculated (%): C, 67.48; H, 7.55. IR, v/cm⁻¹: 1210, 1080 (C–O), 1740, 1700 (C=O), 3200–3500 (OH). UV (MeOH), λ_{max}/nm (ϵ): 278 (1415); 284 (1489). ¹H NMR, δ: 1.21 (s, 3 H, MeC(2)); 1.79–2.20 (m, 4 H, H(3), H(1')); 1.94, 1.97, 2.06 (all s, 9 H, MeC_{arom}); 2.28 (s, 3 H, MeCO₂); 2.50–2.75 (m, 4 H, H(4), H(2['])). ¹³C NMR, δ: 12.02, 12.24, 13.11 (MeCarom); 20.46 (MeCO₂); 21.38 (C(4)); 23.59 (MeC(2)); 29.51 (C(2')); 32.26 (C(3)); 35.68 (C(1')); 75.33 (C(2)); 118.63, 123.93, 126.30, 127.92 (C(4a), C(5), C(7), C(8)); 142.21 (C(8a)); 150.11 (C(6)); 171.53 (MeCO₂); 177.57 (CO₂H).

(2RS)-6-Benzyloxy-2-(2-carboxyethyl)-2,5,7,8-tetramethylchromane (16). A solution of AgNO₃ (0.32 g, 1.9 mmol) in water (3.8 mL) was added to a solution of aldehyde 13 (0.55 g, 1.6 mmol) in EtOH (25 mL). The mixture was stirred for 5 min at ~20 °C, and a solution of NaOH (0.31 g, 7.8 mmol) in H₂O (8.9 mL) was added dropwise. The mixture was stirred for 2 h at ~20 °C and filtered, and the filtrate was concentrated in vacuo to ~5 mL. The residue was dissolved in H₂O (20 mL) and washed with EtOAc. The aqueous solution was acidified with 1 M HCl and extracted with EtOAc, and the extract was washed with brine, dried with MgSO₄, and concentrated to give 0.43 g (73%) of acid 16, m.p. 76-78 °C. Found (%): C, 74.63; H, 7.39. C₂₃H₂₈O₄. Calculated (%): C, 74.97; H, 7.66. IR, v/cm⁻¹: 1700 (C=O), 3300-3600 (OH). UV (EtOH), λ_{max}/nm (ε): 203 (62191); 287 (1974). ¹H NMR, δ: 1.33 (s, 3 H, MeC(2)); 1.81-2.15 (m, 4 H, H(3), H(1')); 2.14, 2.23, 2.28 (all s, 9 H, MeCarom); 2.50-2.80 (m, 4 H, H(4), H(2')); 4.76 (s, 2 H, OCH₂Ph); 7.37–7.57 (m, 5 H, H_{Ph}). ¹³C NMR, δ: 11.73, 11.92, 12.78 (MeC_{arom}); 20.42 (C(4)); 23.31 (<u>Me</u>C(2)); 28.54 (C(2')); 31.37 (C(3)); 34.31 (C(1')); 73.53 (OCH₂Ph); 74.67 (C(2)); 117.20, 122.83, 126.01, 127.95, (C(4a), (C(5), C(7) C(8)); 127.66, 128.38 (C(2)Ph-C(6)Ph); 137.87 (C(1)Ph); 147.34 (C(8a)); 148.36 (C(6)); 180.12 (CO₂H).

(2*RS*)-6-Acetoxy-2-(2-carboxyethyl)-2,5-dimethyl-3,4-dihydro-2*H*-naphtho[1,2-*b*]pyran (17). Jones reagent (1.0 mL, 2.8 mmol) was added at 0 °C with vigorous stirring to a solution of aldehyde 14 (0.66 g, 2.0 mmol, prepared as described previously²²) in acetone (10 mL). The mixture was stirred for 2 h at ~20 °C and then worked-up as described above (see the preparation of acid 15) to give 0.44 g (64%) of acid 17, m.p. 150–152 °C. Found (%): C, 69.85; H, 6.63. $C_{20}H_{22}O_5$. Calculated (%): C, 70.16; H, 6.48. IR, v/cm⁻¹: 1760, 1710 (C=O), 2800–3600 (OH). UV (MeOH), λ_{max}/nm (ϵ): 242 (19048), 278 (2196), 295 (923), 328 (554). ¹H NMR, δ : 1.32 (s, 3 H, MeC(2)); 1.82–2.05 (m, 4 H, H(3), H(1')); 2.11 (s, 3 H, MeC(5)); 2.42 (s, 3 H, MeCO₂); 2.58–2.80 (m, 4 H, H(4), H(2')); 7.40 (m, 2 H, H(8), H(9)); 7.55, 8.15 (both d, 2 H, H(7), H(10), J = 7.7 Hz). ¹³C NMR (δ : 12.69 (MeC(5)); 20.55 (MeCO₂); 21.51 (C(4)); 23.81 (MeC(2)); 32.23 (C(3)); 33.04 (C(2')); 37.01 (C(1')); 76.63 (C(2)); 115.74, 126.08, 127.17, 127.48 (C(4a), C(5), C(6a), C(10a)); 121.44, 122.82, 125.64, 127.14 (C(7)–C(10)); 138.32 (C(10b); 147.59 (C(6)); 171.75 (MeCO); 179.80 (CO₂H).

(2RS, 2'EZ)-6-Acetoxy-2-(3'-acetoxyprop-2'-en-1'-yl)-2,5,7,8-tetramethylchromane (18). A mixture of aldehyde 12 (2.6 g, 8.5 mmol), Ac₂O (20 mL), and AcOK (0.13 g, 1.3 mmol) was refluxed for 4 h and then concentrated in vacuo to ~2 mL, and EtOAc (50 mL) was added. The solution was washed successively with NaHCO₃ and H₂O, dried with MgSO₄, and concentrated. The residue was chromatographed on SiO_2 (30 g), using a 5 : 1 *n*-hexane—EtOAc mixture as the eluent to give 1.9 g (65%) of a mixture of enol acetates 18 ($E/Z \approx 2$: 1). Found (%): C, 69.67; H, 7.74. C₂₀H₂₆O₅. Calculated (%): C, 69.34; H, 7.56. IR, v/cm^{-1} : 1760, 1740 (OC=O), 1650 (C=C). UV (CHCl₃), λ_{max}/nm (ε): 263 (1951), 286 (2123). ¹H NMR, δ: 1.30 (s, 3 H, MeC(2)); 1.72-1.90 (m, 2 H, H(3)); 2.00, 2.05, 2.13 (all s, 12 H, MeC_{arom}, MeCO₂C(3')); 2.20-2.47 (m, 2 H, H(1')); 2.31 (s, 3 H, MeCO₂Ar); 2.50-2.72 (m, 2 H, H(4)); 5.05 (dt, ~0.3 H, H(2') in the Z-isomer, J = 7.2, 6.5 Hz); 5.52 (dt, ~0.7 H, H(2') in the *E*-isomer, J = 12.5, 8.0 Hz; 7.16 (m, 1 H, (H(3')). ¹³C NMR, δ : 11.58, 11.81, 12.67 (MeC_{arom}); 13.88 (<u>Me</u>C(2)); 20.22, 20.28, 20.33 (MeCO₂C(3[']), MeCO₂Ar); 22.41 (C(4)); 27.24 (C(1') in the Z-isomer); 30.46 (C(1') in the E-isomer); 31.36 (C(3)); 74.34, 74.52 (C(2)); 108.47 (C(2') in the Z-isomer); 109.52 (C(2') in the E-isomer); 116.86, 116.92, 122.78, 122.69, 124.77, 126.57, 126.62 (C(4a), C(5), C(7), C(8)); 135.64 (C(3') in the Z-isomer); 137.11 (C(3') in the E-isomer); 140.46, 140.58 (C(8a)); 148.78 and 148.72 (C(6)); 167.67 (MeCO₂(3') in the *E*-isomer); 168.67 (Me $\underline{CO}_2(3')$ in the *Z*-isomer); 169.31 $(Me\underline{C}O_2Ar).$

(2RS, 2'EZ)-2-(3'-Acetoxyprop-2'-en-1'-yl)-6-benzyloxy-2,5,7,8-tetramethylchromanes (19). A mixture of aldehyde 13 (0.91 g, 2.6 mmol), Ac₂O (5 mL), and AcOK (0.04 g, 0.41 mmol) was refluxed for 4 h and concentrated in vacuo to 1 mL, and EtOAc (20 mL) was added. The solution was washed successively with NaHCO₃ and H₂O, dried with MgSO₄, and concentrated. The residue was chromatographed on SiO₂ (20 g) using a 5 : 1 *n*-hexane—EtOAc mixture as the eluent to give 0.76 g (74%) of enol acetates **19** ($E/Z \approx 2$: 1). Found (%): C, 75.82; H, 7.81. C₂₅H₃₀O₄. Calculated (%): C, 76.11; H, 7.66. IR, v/cm⁻¹: 1760 (C=O), 1680 (C=C). UV (EtOH), λ_{max}/nm (ε): 287 (3120). ¹H NMR, δ: 1.30, 1.34 (both s, 3 H, MeC(2)); 1.75–2.00 (m, 2 H, H(3)); 2.11, 2.19, 2.24 (all s, 9 H, MeC_{arom}); 2.29 (s, 3 H, MeCO₂); 2.40-2.60 (m, 2 H, H(1')); 2.60-2.95 (m, 2 H, H(4)); 4.75 (s, 2 H, OCH₂Ph); 5.14 (dt, ~0.3 H, H(2') in the Z-isomer, J = 7.0, 6.5 Hz; 5.60 (dt, ~0.7 H, H(2') in the *E*-isomer, J = 12, 8.0 Hz); 7.20 (m, 1 H, H(3')); 7.25-7.60 (m, 5 H, H_{Ph}). ¹³C NMR, δ : 11.50, 11.62, 12.50 (MeC_{arom}); 20.10; 20.49 (MeCO₂); 20.26 (C(4)); 23.54, 23.75 (MeC(2)); 30.63, 30.79 (C(3)); 34.02 (C(1') in the Z-isomer); 37.22 (C(1') in the *E*-isomer); 73.97, 74.17, 74.31 (C(2), O<u>C</u>H₂Ph); 108.47 (C(2') in the Z-isomer)); 109.48 (C(2') in the E-isomer); 116.97, 117.03, 122.58, 125.62, 127.85 (C(4a), C(5), C(7), C(8)); 127.32, 127.39, 128.08, 128.15 (C(2)Ph-C(6)Ph); 135.68, 136.97 (C(3')); 137.67 (C(1)Ph); 147.19, 147.31 (C(8a)); 148.09 (C(6)); 167.34, 167.49 (Me<u>C</u>O₂).

(2RS,2'EZ)-6-Acetoxy-2-(3'-acetoxyprop-2'-en-1'-yl)-2,5-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyrans (20). A mixture of aldehyde 14 (0.34 g, 1.04 mmol), Ac₂O (3 mL), and AcOK (0.018 g, 0.18 mmol) was refluxed for 4 h and worked-up as described in the synthesis of enol acetates 18 to give 0.28 g (73%) of enol acetates **20** ($E/Z \approx 2$: 1). Found (%): C, 71.97; H, 6.38. C₂₂H₂₄O₅. Calculated (%): C, 71.72; H, 6.57. IR, v/cm⁻¹: 1680 (C=C), 1760 (C=O), 1210, 1080, 1060 (C-O). UV (MeOH), λ_{max}/nm (ϵ): 243 (49677), 302 (16667). ¹H NMR, δ: 1.34 (s, 3 H, MeC(2)); 1.80-1.98 (m, 2 H, H(3)); 2.12 (s, 3 H, MeC(5)); 2.20, 2.21 (both s, 3 H, MeCO₂C(3')); 2.34–2.55 (m, 2 H, (H(1')); 2.48 (s, 3 H, MeCO₂Ar); 2.60–2.80 (m, 2 H, H(4)); 5.10 (dt, ~0.3 H, H(2') in the Z-isomer, J = 7.8, 6.6 Hz); 5.61 (dt, ~0.7 H, H(2') in the *E*-isomer, J = 8.3, 12.0 Hz); 7.20 (m, 1 H, H(3')); 7.45 (m, 2 H, H(8), H(9)); 7.67 dd and 8.24 m (2 H, H(7), H(10), J = 8.0 Hz, 1.5). ¹³C NMR, δ : 12.35 (MeC(5)); 13.89 and 13.93 (MeC(2)); 20.07, 20.28, 20.34 $(MeCO_2Ar, MeCO_2C(3')); 20.20 (C(4)); 30.38, 30.74 (C(3));$ 31.67 (C(1') in the Z-isomer); 33.81 (C(1') in the E-isomer); 75.00, 75.19 (C(2)); 108.06 (C(2') in the Z-isomer); 109.34 (C(2') in the E-isomer); 113.78, 113.82, 124.48, 125.55, 125.93 (C(4a), C(5), C(6a), C(10a)); 120.11, 120.15, 121.59, 121.63 (C(7)-C(10)); 135.83 (C(3') in the Z-isomer); 136.91 (C(3') in the E-isomer); 136.88 (C(10b), 146.03, 146.15 (C(6)); 167.56, 167.69 (MeCO₂C(3['])); 169.28 (MeCO₂Ar).

(2RS)-6-Acetoxy-2,5,7,8-tetramethyl-2-(2-oxoethyl)chromane (21). An ozone-oxygen mixture was passed with stirring (-70 °C) at a rate of 30 l h⁻¹ for 4.5 min (1.5 mmol O₃, with an ozone generator productivity of 20 mmol O_3 h⁻¹) through a mixture of enol acetates 18 (0.5 g, 1.4 mmol), NaHCO₃ (0.16 g), and a 10: 1 CH₂Cl₂—anhydrous MeOH mixture (2.9 mL). The reaction mixture was purged (Ar), then Me₂S (1.6 mL) was added at -40 °C, and after warming-up to ~20 °C, the mixture was stirred for 5 h and concentrated in vacuo. The residue was diluted with water (10 mL) and extracted with EtOAc. The extract was washed with brine, dried with MgSO₄, and concentrated. The residue was chromatographed on a column with SiO_2 (5 g), using a 3 : 1 *n*-hexane—EtOAc mixture as the eluent to give 0.32 g (79%) of aldehyde **21**. IR, v/cm^{-1} : 1720, 1750 (C=O). UV (CHCl₃), λ_{max}/nm (ϵ): 275 (1923); 284 (1769). ¹H NMR, δ: 1.36 (s, 3 H, MeC(2)); 1.76–1.91 (m, 2 H, H(3)); 1.95, 1.99, 2.06 (all s, 9 H, MeC_{arom}); 2.29 (s, 3 H, MeCO₂); 2.45-2.70 (m, 4 H, H(4), H(1')); 9.86 (t, 1 H, HCO, J = 2.0 Hz). ¹³C NMR, δ : 11.85, 11.90, 12.70 (MeC_{arom}); 13.50 (MeC(2)); 19.96 (C(4)); 20.10 (MeCO₂); 31.28 (C(3)); 59.93 (C(1')); 73.46 (C(2)); 116.54, 122.78, 124.92 126.67 (C(4a), (C(5), C(7), C(8)); 140.90 (C(8a)); 148.06 (C(6)); 169.14 $(Me\underline{C}O_2)$; 201.05 (CHO). (for the IR, UV, and ¹H NMR spectra of the S-enantiomer, cf. Ref. 13).

(2*RS*)-6-Benzyloxy-2,5,7,8-tetramethyl-2-(2-oxoethyl)chromane (22). A similar procedure starting from a enol acetate mixture 19 (0.2 g, 0.51 mmol), NaHCO₃ (0.06 g), and a 10 : 1 CH₂Cl₂—anhydrous MeOH mixture (1.1 mL) gave 0.12 g of aldehyde 22 (71%) (slowly crystallizing oil, m.p. 70–80 °C, *cf.* Ref. 25). IR, v/cm⁻¹: 1720 (C=O), 1080, 1060 (C–O). UV (EtOH), λ_{max} /nm (ϵ): 264 (1714), 287 (2643). ¹H NMR, δ : 1.47 (s, 3 H, MeC(2)); 1.90–2.01 (m, 2 H, H(3)); 2.15, 2.22, 2.28 (all s, 9 H, MeC_{arom}); 2.60 (dd, 1 H, H_A, *J* = 15.0, 3.4 Hz); 2.68 (m, 2 H, H(4)); 2.76 (dd, 1 H, H_B, *J* = 15.0, 2.5 Hz); 4.76

(s, 2 H, OCH₂Ph); 7.30–7.60 (m, 5 H, H_{Ph}); 9.98 (dd, 1 H, CHO, J = 3.4, 2.5 Hz). ¹³C NMR, 8: 10.59, 10.90, 11.48 (MeC_{arom}); 19.05 (C(4)); 23.49 (MeC(2)); 30.66 (C(3)); 51.19 (C(1')); 72.58 (OCH₂Ph); 73.72 (C(2)); 116.17, 122.00, 124.52, 127.55 (C(4a), C(5), C(7), C(8)); 126.35; 126.43, 127.00, 127.12 (C(2)Ph-C(6)Ph); 137.16 (C(1)Ph); 146.39 (C(8a)); 148.30 (C(6)); 201.80 (CHO). (The ¹H and ¹³C NMR spectra for the *R*- and *S*-enantiomers **22** were reported in Ref. 25).

(2RS)-6-Acetoxy-2,5-dimethyl-2-(2-oxoethyl)-3,4-dihydro-2H-naphtho[1,2-b]pyran (23). A similar procedure starting from a mixture of enol acetates 20 (0.17 g, 0.46 mmol), NaHCO3 (0.053 g), and a 10 : 1 CH₂Cl₂—anhydrous MeOH mixture (1.1 mL) gave 0.1 g (71%) of aldehyde 23. IR, v/cm^{-1} : 1710, 1760 (C=O), 1210, 1060 (C-O). UV (CHCl₃), λ_{max}/nm (ε): 242 (23168), 302 (2622), 328 (1565). ¹H NMR, δ: 1.29 (s, 3 H, MeC(2)); 2.05-2.15 (m, 2 H, H(3)); 2.21 (s, 3 H, MeC(5)); 2.46 (s, 3 H, MeCO₂); 2.70 (dd, 1 H, H_A, J = 12.8, 3.2 Hz); 2.80 $(m, 2 H, H(4)); 2.87 (dd, 1 H, H_B, J = 12.8, 2.0 Hz); 7.42 (m, 1)$ 2 H, H(8), H(9)); 7.66, 8.13 (both d, 2 H, H(7), H(10), J= 7.5 Hz); 10.0 (dd, 1 H, HCO, J = 3.2, 2.0 Hz). ¹³C NMR, δ : 12.58 (MeC(5)); 20.43 (C(4)); 20.58 (MeCO₂); 29.26 (MeC(2)); 31.67 (C(3)); 53.85 (C(1')); 74.37 (C(2)); 120.47, 121.62, 125.02, 126.44 (C(7)-C(10)); 113.91, 124.63, 125.73, 126.29 (C(5), C(4a), C(6a), C(10a)); 137.67 (C(10b), 145.71 (C(6)); 169.50 (MeCO2); 201.09 (CHO).

(2RS)-6-Acetoxy-2-carboxymethyl-2,5,7,8-tetramethylchromane (24). Jones reagent (0.5 mL, 1.4 mmol) was added dropwise with vigorous stirring at 0 °C to a solution of aldehyde 21 0.25 g (0.86 mmol) in acetone (2 mL). The mixture was stirred for 2 h at ~20 °C and extracted with EtOAc. The extract was washed with brine, dried with MgSO₄, and concentrated. The residue was chromatographed on a column with SiO_2 (4 g) using methanol as the eluent to give 0.15 g (58%) of acid 24, m.p. 132-134 °C (cf. Ref. 13). IR, v/cm⁻¹: 3500–2800 (OH), 1710 (C=O), 1750 (OC=O). UV (MeOH), λ_{max}/nm (ϵ): 203 (4114); 221 (1286); 278 (1906). ¹H NMR, δ: 1.43 (s, 3 H, MeC(2)); 1.93, 1.96, 2.05 (all s, 9 H, MeC_{arom}); 2.08–2.21 (m, 2 H, H(3)); 2.28 (s, 3 H, $MeCO_2$); 2.43 (d, 1 H, H_A, J = 12.9 Hz); 2.53 (d, 1 H, H_B, J =12.9 Hz); 2.58–2.79 (m, 2 H, H(4)) (cf. Ref. 13). ¹³C NMR, δ: 12.04, 12.20, 13.07 (MeC_{arom}); 20.49 (<u>Me</u>C(2)); 21.73 (C(4)); 25.45 (MeCO₂); 31.94 (C(3)); 48.20 (C(1')); 75.87 (C(2)); 119.07, 123.94, 126.09, 127.63 (C(4a), C(5), C(7), C(8)); 142.10 (C(8a)); 150.39 (C(6)); 171.71 (MeCO₂); 179.18 (CO₂H).

(2RS)-6-Benzyloxy-2-carboxymethyl-2,5,7,8-tetramethylchromane (25). A solution of AgNO₃ (0.11 g, 0.65 mmol) in water (1.3 mL) was added to a solution of aldehvde 22 (0.19 g. 0.56 mmol) in EtOH (8.6 mL). The mixture was stirred for 5 min at ~20 °C, a solution of NaOH (0.11 g, 2.75 mmol) in H₂O (3 mL) was added dropwise, the mixture was stirred for 2 h and filtered, and the filtrate was concentrated in vacuo. The residue was dissolved in H₂O (6 mL), and the solution was washed with EtOAc. The aqueous solution was acidified with 1 M HCl and extracted with EtOAc, and the extract was washed with brine, dried with MgSO₄, and concentrated to give 0.12 g (61%) of acid 25, m.p. 131–133 °C (cf. Ref. 18). IR, v/cm⁻¹: 3500–2800 (OH), 1700 (C=O). UV (MeOH), λ_{max}/nm (ϵ): 267 (1648), 286 (1444). ¹H NMR, δ: 1.29 (s, 3 H, MeC(2)); 1.92–2.08 (m, 2 H, H(3)); 2.12, 2.19, 2.24 (all s, 9 H, MeC_{arom}); 2.61-2.72 (m, 4 H, H(4), H(1')); 4.69 (s, 2 H, OCH₂Ph); 7.20-7.60 (m, 5 H, H_{Ph}) (cf. Ref. 18). ¹³C NMR, δ: 11.70, 11.89, 12.77 (MeC_{arom}); 20.42 (C(4)); 24.55 (MeC(2)); 29.60 (C(3));

43.84 (C(1')); 73.40 (O<u>C</u>H₂Ph); 74.67 (C(2)); 117.16, 123.13, 126.06, 128.24 (C(4a), C(5), C(7), C(8)); 127.67, 127.74, 128.38 (C(2)Ph-C(6)Ph); 137.76 (C(1)Ph); 146.87 (C(8a)); 148.65 (C(6)); 175.45 (CO₂H).

(2RS)-6-Acetoxy-2-carboxymethyl-2,5-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran (26). Jones reagent (0.5 mL, 1.4 mmol) was added dropwise with vigorous stirring at ~ 0 °C to a solution of aldehyde 23 (0.4 g, 1.28 mmol) in acetone (2 mL). The mixture was stirred for 2 h at ~20 °C and worked-up as in the synthesis of acid 24 to give 0.29 g (69%) of acid 26 as a glassy material. Found (%): C, 69.23; H, 6.32. C19H20O5. Calculated (%): C, 69.50; H, 6.14. IR, v/cm⁻¹: 1705, 1740 (C=O), 3200–3600 (OH). UV (CHCl₃), λ_{max}/nm (ε): 243 (49000), 265 (4215), 301 (2273), 329 (1239). ¹H NMR, δ: 1.25 (s, 3 H, MeC(2)); 1.50-1.90 (m, 2 H, H(3)); 2.18 (s, 3 H, MeC(5)); 2.47 (s, 3 H, MeCO₂); 2.72–2.90 (m, 4 H, H(4), H(1')); 7.45 (m, 2 H, H(8), H(9)); 7.64, 8.18 (both d, 2 H, H(7), H(10), J =7.8 Hz). ¹³C NMR, δ: 12.54 (MeC(5)); 14.04 (MeC(2)); 20.47 (MeCO₂); 20.58 (C(4)); 29.62 (C(3)); 30.62 (C(1')); 74.17 (C(2)); 120.28, 121.78, 124.63, 126.29 (C(7)-C(10)); 114.02, 124.83, 125.71, 126.11 (C(5), C(4a), C(6a), C(10a)); 137.39 (C(10b); 145.74 (C(6)); 169.69 (Me<u>C</u>O₂); 175.11 (CO₂H).

This work was supported by the Russian Foundation for Basic Research (competition $r_agidel'_a$, Project No. 05-03-97901).

References

- 1. M. E. Jung and J. M. MacDougall, *Tetrahedron Lett.*, 1999, **40**, 6339.
- 2. W. J. Wechter, D. Kantoci, E. D. Murray Jr., D. C. D'Amico, M. E. Jung, and W.-H. Wang, *Proc. Natl. Acad. Sci. USA*, 1996, **93**, 6002.
- K. Hensley, E. J. Benaksas, R. Bolli, P. Comp, P. Grammas, L. Hamdheydari, S. Mou, Q. N. Pye, M. F. Stoddard, G. Wallis, K. S. Williamson, M. West, W. J. Wechter, and R. A. Floyd, *Free Radic. Biol. Med.*, 2004, 36, 1.
- 4. J. M. Grisar, M. A. Petty, F. N. Bolkenius, J. Dow, J. Wagner, E. R. Wagner, K. D. Haegele, and W. De Jong, *J. Med. Chem.*, 1991, **34**, 257.
- 5. J. M. Grisar, G. Marciniak, F. N. Bolkenius, J. Verne-Mismer, and E. R. Wagner, J. Med. Chem., 1995, 38, 2880.
- S. Manfredini, S. Vertuani, B. Manfredi, G. Rossoni, G. Calviello, and P. Palozza, *Bioorg. Med. Chem.*, 2000, 8, 2791.

- 7. P. Arya, N. Alibhai, H. Qin, and G. W. Burton, *Bioorg. Med. Chem. Lett.*, 1998, **8**, 2433.
- M. Tobe, Y. Isobe, Y. Goto, F. Obara, M. Tsuchiya, J. Matsui, K. Hirota, and H. Hayashi, *Bioorg. Med. Chem.*, 2000, 8 2037.
- 9. Y. Goto, N. Watanabe, N. Kogawa, M. Tsuchiya, O. Takahashi, H. Uchi, M. Furue, and H. Hayashi, *Eur. J. Pharmacol.*, 2002, **438**, 189.
- M. Koufaki, T. Calogeropoulou, E. Rekka, M. Chryselis, P. Papazafiri, C. Gaitanaki, and A. Makriyannis, *Bioorg. Med. Chem.*, 2003, 11, 5209.
- A. Betancor-Fernandez, H. Sies, W. Stahl, and M. C. Polidori, *Free Radic. Res.*, 2002, 36, 915.
- 12. Y. Yoshida and E. Niki, Biofactors, 2002, 16, 93.
- 13. J. W. Scott, F. T. Bizzarro, D. R. Parrish, and G. Saucy, *Helv. Chim. Acta.*, 1976, **59**, 290.
- N. Cohen, R. J. Lopresti, and C. Neukom, J. Org. Chem., 1981, 46, 2445.
- N. Cohen, C. G. Scott, C. Neukom, R. J. Lopresti, G. Weber, and G. Saucy, *Helv. Chim. Acta*, 1981, 64, 1158.
- 16. J. W. Scott, W. M. Cort, H. Harley, D. R. Parrish, and G. Saucy, J. Am. Oil. Chem. Soc., 1974, 51, 200.
- 17. N. Cohen, B. L. Banner, and C. Neukom, *Synth. Commun.*, 1982, **12**, 57.
- N. Cohen, J. W. Scott, F. T. Bizzarro, R. J. Lopresti, W. F. Eichel, and G. Saucy, *Helv. Chim. Acta*, 1978, **61**, 837.
- 19. D. A. Janero, N. Cohen, B. Burghardt, and B. H. Schaer, *Biochem. Pharmacol.*, 1999, **40**, 551.
- 20. S. A. S. Pope, G. E. Burtin P. T. Clayton, D. J. Madge, and D. P. R. Muller, *Free Radic. Biol. Med.*, 2002, **33**, 807.
- 21. K. Mukai, K. Okabe, and H. Hosose, J. Org. Chem., 1989, 54, 557.
- 22. A. Yu. Spivak, O. V. Knyshenko, M. I. Mallyabaeva, and V. N. Odinokov, *Izv. Akad. Nauk. Ser. Khim.*, 2005, 952 [*Russ. Chem. Bull.*, *Int. Ed.*, 2005, **54**, 975].
- 23. V. N. Odinokov, A. Yu. Spivak, G. A. Emel'yanova, B. I. Kutepov, and L. M. Khalilov, *Izv. Akad. Nauk. Ser. Khim.*, 2001, 2127 [*Russ. Chem. Bull., Int. Ed.*, 2001, **50**, 2227].
- 24. J. Weichet, L. Blaha, and B. Kakac, *Collect. Czech. Chem. Commun.*, 1959, **24**, 1689.
- 25. V. N. Odinokov, A. Yu. Spivak, G. A. Emel'yanova, G. D. Gamalevich, and E. P. Serebryakov, *Izv. Akad. Nauk. Ser. Khim.*, 2001, 2026 [*Russ. Chem. Bull., Int. Ed.*, 2001, 50, 2121].

Received October 14, 2005; in revised form December 28, 2005