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Abstract. Let π : E → X be a real Banach bundle with section space Γ(π), where
X is a compact Hausdorff space. We complete the characterization of weak-* and
sequential weak-* points of continuity in the unit ball of Γ(π)∗ for certain classes of
bundles (which include the trivial ones), which was begun in an earlier paper. The
proofs avoid the use of vector measures.
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The present paper, a continuation of [10], is motivated by the literature which
exists on the various extremal properties of Banach spaces of the form C(X,E)
and their duals, where X is a compact Hausdorff space and C(X,E) is the space of
continuous E-valued functions onX. As might be expected, the extremal properties
of these vector-valued spaces of continuous functions are related quite strongly to
the extremal structure of E. Noting that the elements of C(X,E) take their values
in a constant space, it is natural to ask what might happen in a situation in which
continuous vector-valued functions take their values in spaces which vary with
x ∈ X. A reasonable setting for this question is that of section spaces of Banach
bundles and their dual spaces.
In this paper, X will denote a compact Hausdorff space, and π : E → X will

denote a Banach bundle (= bundle of Banach spaces) with real fibers {Ex : x ∈ X};
we will assume throughout the paper that for all x ∈ X, Ex 6= {0}. The total space
E carries a topology such that the relative topology on each fiber Ex is its original

Banach space topology. We can regard E as the disjoint union
•
⋃

{Ex : x ∈ X}.
(Alternatively, we can think of E as

⋃

{{x} × Ex : x ∈ X}; this is the approach
of [3], which uses fibered vector spaces.) See e.g. [3] or [8] for details on the
construction of Banach bundles; the most important properties for our present
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58 T. Hõim and D.A. Robbins

purposes are outlined here. We denote by Γ(π) the space of sections (= continuous
choice functions σ : X → E) of the bundle π : E → X; Γ(π) is a Banach C(X)-
module under the norm ‖σ‖ = sup{‖σ(x)‖ : x ∈ X}, pointwise addition, and the
operation (a · σ)(x) = a(x)σ(x) (a ∈ C(X), x ∈ X). In particular, see [3] or [8] for
details on the topology of the total space E , which is determined by Γ(π).
In thinking about the section space Γ(π), perhaps the most important intuitive

point to keep in mind is that when σ ∈ Γ(π), then the values σ(x) ∈ Ex vary
continuously over (quite possibly very) different spaces as x varies over X. This
is an analogue to a way in which one may think of a space of the form C(X,E)
(= space of continuous functions from X to the (real) Banach space E). We can
regard C(X,E) as the space of sections of the trivial bundle ρ : T = X × E → X,
where X × E is given the product topology. Here, the total space T = X × E
=
⋃

{{x}×E : x ∈ X} can be thought of as a union of copies of E, and an element
σ ∈ C(X,E), which we usually think of as having values which vary continuously
over the fixed set E, can be interpreted as a section in Γ(ρ) which varies in a very
nice way between these copies of E.
The reader may also wish to consult [7] for a discussion of several ways of

thinking about bundles.
Given a Banach bundle π : E → X, the function x 7→ ‖σ(x)‖ is upper semi-

continuous from X to R for each σ ∈ Γ(π). If this function is continuous for
each σ ∈ Γ(π), we will call π : E → X a continuous bundle. We call the bun-
dle π : E → X separable if there exists a countable set {σn} ⊂ Γ(π) such that
{σn(x)} is dense in Ex for each x ∈ X; this can be interpreted as a sort of uniform
separability of the fibers Ex.
We denote by H the space HomX(Γ(π), C(X)) of all C(X)-module homomor-

phisms from Γ(π) to C(X). As noted in [7], we can identify H with the space of

choice functions H : X →
•
⋃

{E∗
x : x ∈ X} which satisfy the property that the

function x 7→ 〈σ,H〉 (x) = 〈σ(x), H(x)〉 is continuous for each σ ∈ Γ(π). (Here and
henceforth, for typographical convenience, we write E∗

x for (Ex)
∗). It is the case

that H is a Banach space under the norm ‖H‖ = sup{‖H(x)‖ : x ∈ X}. As in [5],
we say that H norms the bundle π : E → X if for each x ∈ X and z ∈ Ex we have

‖z‖ = sup{|〈z,H(x)〉| : H ∈ H, ‖H‖ ≤ 1}.

This condition actually happens with fair frequency; see the discussion in [5] fol-
lowing Definition 4.4. We will say that H is strongly norming provided that for
each x ∈ X we have

{H(x) : H ∈ H, ‖H‖ = ‖H(x)‖} = E∗
x.

Examples of bundles which are strongly normed byH include: 1) the trivial bundles
ρ : X × E → X, where E is a Banach space and Γ(π) is C(X)-isometrically
isomorphic to C(X,E) (the constant maps from X to E∗ will do the job); and 2)
the continuous and separable bundles (see [3, Corollary 19.16]).
If Z is a Banach space, denote by BZ the unit ball of Z. The paper [10] in-

vestigates various extremal properties of the unit balls of BΓ(π) and BΓ(π)∗ . Prior
work regarding extremal structure in BC(X,E) and BC(X,E)∗ (see e.g. [6] or [2]) has
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Extremal properties of section spaces 59

used the characterization of C(X,E)∗ very strongly. However, to the knowledge of
the authors, there is no such concise characterization of Γ(π)∗. The investigation
in [10] was handicapped by this lack of nice characterization. Indeed, contrast the
two situations:
1) If X is a compact Hausdorff space, and if E is a Banach space, then C(X,E)∗

can be isometrically identified with the space M(X,E∗) of all countably additive
E∗-valued Borel measures on X, with the variation norm, and action 〈f, µ〉 =
∫

X
fdµ.
2) Let π : E → X be a separable real bundle and let φ ∈ Γ(π)∗. Then there is

a regular Borel measure µ on X and a choice function η : X →
•
⋃

{E∗
x : x ∈ X}

such that (among other properties) a) ‖η(x)‖ ≤ 1 for all x ∈ X and equality holds
µ-almost everywhere; b) the function x 7→ 〈σ(x), η(x)〉 is Borel measurable for each
σ ∈ Γ(π); and c) for all σ ∈ Γ(π) we have 〈σ, φ〉 =

∫

X
〈σ(x), η(x)〉 dµ. (See [4].)

In particular, whereas in [6] a necessary and sufficient condition for a functional
φ ∈ C(X,E)∗ to be a weak-* point of continuity (or a sequential weak-* point of
continuity, in case X is metric) of the unit ball was obtained, in [10] only a sufficient
description for φ ∈ Γ(π)∗ to be a weak-* point of continuity of the unit ball could
be proven. The purpose of this paper is to complete the characterization of weak-*
points of continuity and sequential continuity in BΓ(π)∗ for a class of bundles which
includes the trivial ones. Our proofs are actually shorter than those of the more
special cases addressed in [6], and do not employ vector measures.
Recall that a point φ ∈ BZ∗ is called a weak-* point of continuity provided that

whenever {φλ} is a net in BZ∗ which converges weak-* to φ, then {φλ} converges in
norm to φ. The definition of a sequential weak-* point of continuity replaces “nets”
by “sequences”. Recall also that if π : E → X is a Banach bundle, and if x ∈ X,
then there is an isomorphic injection jx : E

∗
x → Γ(π)∗ given by (for σ ∈ Γ(π))

〈σ, jx(f)〉 = 〈σ(x), f〉 = 〈σ, f ◦ evx〉 , where evx : Γ(π) → Ex, σ 7→ σ(x) ∈ Ex, is
the evaluation map. In addition, for each closed set C ⊂ X and φ ∈ Γ(π)∗, there
is an L-projection PC : Γ(π)

∗ → Γ(π)∗, PC(φ) = φC . The action of φC on Γ(π) is
defined as follows: let W run through the system of open neighborhoods of C, and
for each such W, let iW ∈ C(X), iW : X → [0, 1], be such that iW (C) = 0 and
iW (X \ C) = 1 (i.e. {iW } is an approximate identity for the ideal of functions in
C(X) which vanish on C). Then

〈σ, φC〉 = lim
W→C

〈(1− iW )σ, φ〉 .

(See [4] or [9].) That is, φC = weak-* limW→C(1 − iW )φ. If C ⊂ X is closed, we
write φX\C = φ − φC ; thus we have ‖φ‖ = ‖φC‖ +

∥

∥φX\C

∥

∥ , and φA makes sense
if A ⊂ X is either open or closed. With a little work, it can also be shown that if
C ⊂ X is closed, and if U ⊂ C is open, then we can also write φC = φC\U + φU ,

with ‖φC‖ =
∥

∥φC\U
∥

∥+ ‖φU‖ .
In particular, if x ∈ X and φ ∈ Γ(π)∗, we write φx = φ{x}, and we note that if

{x1, ..., xm} ⊂ C, then
∥

∥

∥

∥

∥

m
∑

k=1

φxk

∥

∥

∥

∥

∥

=

m
∑

k=1

‖φxk
‖ ≤

∑

x∈C

‖φx‖ =

∥

∥

∥

∥

∥

∑

x∈C

φx

∥

∥

∥

∥

∥

≤ ‖φC‖ ≤ ‖φ‖ .
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60 T. Hõim and D.A. Robbins

It follows that for φ ∈ Γ(π)∗, we have {x : φx 6= 0} is countable. We note that
for x ∈ X and φ ∈ Γ(π)∗, φx ∈ jx(E

∗
x). Note especially that if Γ(π) ' C(X,E),

and if φ ∈ Γ(π)∗ corresponds to µ ∈ M(X,E∗), then φx ∈ Γ(π)
∗ corresponds to

µ({x}) ∈ E∗.

From [10, Proposition 7] we have the following:

Proposition 1. Let π : E → X be a bundle of real Banach spaces, and let
I ⊂ X be the set of isolated points in X. Suppose that φ ∈ Γ(π)∗ has the form
φ =

∑

x∈I φx, where for each x ∈ I either φx = 0 or φx/ ‖φx‖ is a weak-* point
of continuity of BΓ(π)∗ , and

∑

x∈I ‖φx‖ = ‖φ‖ = 1. Then φ is a weak-* point of
continuity of BΓ(π)∗ .

We now state our first result, which is a partial converse to Proposition 1 that
encompasses a large class of bundles. Together, Propositions 1 and 2 generalize
Theorem 6 of [6]. Moreover, the proof of Proposition 2, although it uses generally
some of the ideas of this result, is somewhat simpler, because it does not use vector
measures.

Proposition 2: Let π : E → X be a bundle of real Banach spaces for which H
is strongly norming, and suppose that φ ∈ BΓ(π)∗ is a weak-* point of continuity.
Let I ⊂ X be the set of isolated points of X. Then φ =

∑

x∈I φx, where for each
x ∈ X, either φx = 0 or φx/ ‖φx‖ is a weak-* point of continuity of BΓ(π)∗ , and
‖φ‖ = 1 =

∑

x∈I ‖φx‖ .

Proof. We approach the proof of Proposition 2 through a series of lemmas. The
first two lemmas will show that if φx 6= 0, then φx/ ‖φx‖ is a weak-* point of con-
tinuity of BΓ(π)∗ , and that for all non-isolated points x in X we have φx = 0. Note
that Lemma 3 is really Proposition 8 of [10]; we include the proof here for the sake
of completeness.

Lemma 3. Let π : E → X be a Banach bundle, and let φ ∈ Γ(π)∗, ‖φ‖ = 1, be a
weak-* point of continuity of BΓ(π)∗ . If x ∈ X, and if φx 6= 0, then φx/ ‖φx‖ is a
weak-* point of continuity of BΓ(π)∗ .

Proof. Suppose that {ψα} is a net in BΓ(π)∗ such that ψα → φx/ ‖φx‖ weak-*.
We then have φ− φx + ‖φx‖ψα → φ weak-*, and

‖φ− φx + (‖φx‖ψα)‖ ≤ ‖φ− φx‖+ ‖φx‖ ‖ψα‖ ≤ 1,

so that ‖φ− φx + (‖φx‖ψα)− φ‖ = ‖(‖φx‖ψα)− φx‖ → 0, and thus φx/ ‖φx‖ is a
weak-* point of continuity of BΓ(π)∗ . 2

Lemma 4. Let π : E → X be a Banach bundle such that H is strongly norming.
If φ ∈ Γ(π)∗, ‖φ‖ = 1, is a weak-* point of continuity of BΓ(π)∗ , and if x ∈ X is
non-isolated, then φx = 0.
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Extremal properties of section spaces 61

Proof. Note first that if H ∈ H and µ ∈ M(X), then µ ◦H ∈ Γ(π)∗, and thus for
σ ∈ Γ(π) we have

〈σ, µ ◦H〉 =

∫

X

〈σ(y′), H(y′)〉 dµ.

In particular, if δy ∈M(X) is the unit point mass at y ∈ X and if H ∈ H, we have

〈σ, δy ◦H〉 =

∫

X

〈σ(y′), H(y′)〉 dδy = 〈σ(y), H(y)〉 .

Let S = {δy ◦ H : ‖H‖ = ‖H(y)‖ = 1, H ∈ H, y ∈ X}. Then because H is
strongly norming, S separates points of Γ(π)∗, and, for δy ◦H ∈ S, we have

‖δy ◦H‖ = sup
‖σ‖=1

∣

∣

∣

∣

∫

X

〈σ(y′), H(y′)〉 dδy

∣

∣

∣

∣

= sup
‖σ‖=1

{|〈σ(y), H(y)〉|} = ‖H(y)‖ = 1.

Moreover, each extreme point of BΓ(π)∗ is in S (see [1]), and so the convex hull
co(S) of S is weak-* dense in BΓ(π)∗ .
Now, fix x ∈ X, and suppose that x is non-isolated. Let δy ◦H ∈ S. For each

open neighborhood V of x, choose xV 6= x ∈ V, and for arbitrary y ∈ X define
(δy ◦H)

V
by

〈

σ, (δy ◦H)
V
〉

=
∫

X\V
〈σ(y′), H(y′)〉 dδy +

∫

V
〈σ(xV ), H(xV )〉 dδy

=

{

〈σ(y), H(y)〉 , if y ∈ X \ V
〈σ(xV ), H(xV )〉 , if y ∈ V.

Note that for δy ◦H ∈ S and ‖σ‖ = 1 we have

∣

∣

〈

σ, (δy ◦H)
V
〉∣

∣ ≤ ‖σ‖ ‖H‖ = 1,

so that (δy ◦H)
V ∈ BΓ(π)∗ . We claim that δy ◦H = weak-* limV→{x} (δy ◦H)

V .
Let σ ∈ Γ(π). It is easily checked that for σ ∈ Γ(π) we have

∣

∣

〈

σ, (δy ◦H)
V − (δy ◦H)

〉∣

∣ =
∣

∣

∫

V
〈σ(y′), H(y′)〉 − 〈σ(xV ), H(xV )〉 dδy

∣

∣

≤
∫

V
|〈σ(y′), H(y′)〉 − 〈σ(xV ), H(xV )〉| dδy.

Consider two possibilities:
1) If y 6= x, then as V → {x} we will eventually have y 6∈ V, and so in this case

the second integral becomes 0.
2) If y = x, then let ε > 0 be given. By the continuity of y′ 7→ 〈σ(y′), H((y′)〉

we can find a neighborhood Vε of x such that if y
′ ∈ V ⊂ Vε then

|〈σ(x), H(x)〉 − 〈σ(y′), H(y′)〉| < ε.

Since xV is chosen to be in V, we have

∫

V
|〈σ(y′), H(y′)〉 − 〈σ(xV ), H(xV )〉| dδy =

∫

V
|〈σ(y′), H(y′)〉 − 〈σ(xV ), H(xV )〉| dδx

= |〈σ(x), H(x)〉 − 〈σ(xV ), H(xV )〉|
< ε.
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62 T. Hõim and D.A. Robbins

Note also that for any y ∈ X, H ∈ H, fixed neighborhood V of x, open neigh-
borhood W of x, and σ ∈ Γ(π) we have

〈

σ, ((δy ◦H)
V )x

〉

= limW→{x}(
∫

X\V
〈[(1− iW )σ](y

′), H(y′)〉 dδy
+
∫

V
〈[(1− iW )σ](xV ), H(xV )〉 dδy)

= 0,

because the first integrand is 0 if W ⊂ V, and the second integrand is 0 if xV 6∈W ;
both of these will eventually happen as W → {x}. Thus, ((δy ◦H)

V )x = 0. (Here,
we are choosing iW ∈ C(X) as in the discussion preceding Proposition 1.)

Now, φ 7→ φx is an L-projection in Γ(π)
∗, so we have (φx)x = φx.We can write

φx = fx ◦ evx = (δx ◦H)x (with ‖φx‖ = ‖H(x)‖ = ‖H‖)

for some fx ∈ E∗
x and H ∈ H (because H is strongly norming). If φx 6= 0, then

Lemma 3 assures us that φx/ ‖φx‖ is a weak-* point of continuity ofBΓ(π)∗ , and thus

since φx = weak-* limV→{x}(δx ◦ H)
V and

∥

∥(δx ◦H)
V
∥

∥ ≤ ‖δx ◦H‖ = ‖H(x)‖ =
‖φx‖ , we have

lim
V→{x}

∥

∥φx − (δx ◦H)
V
∥

∥ = 0.

It then follows that

lim
V→{x}

∥

∥(φx)x −
(

(δx ◦H)
V
)

x

∥

∥ = ‖φx‖ = 0,

a contradiction. Hence, φx = 0. 2

Remark. Because the set S described above includes the extreme points of BΓ(π)∗ ,
any element φ ∈ BΓ(π)∗ is a weak-

∗ limit of convex combinations from S. The proof
of the last lemma shows that if x ∈ X is fixed, if λ ⊂ S is finite, and if V denotes
an open neighborhood of x, we have δyk

◦Hk = weak-* limV→{x} (δyk
◦Hk)

V for
each δyk

◦ Hk ∈ λ. Combining these two facts shows that φ ∈ BΓ(π)∗ is a weak-
∗

limit of a net of convex combinations of the form (
∑

λ δyk
◦Hk)

V ∈ BΓ(π)∗ , indexed
by the open neighborhoods V of x and finite sets λ ⊂ S. Since we are assuming
that φ is a weak-∗ point of continuity, φ is also a norm limit of the same net.

To finish the proof of Proposition 2 all we need to show is the following:

Lemma 5. Let I = {x ∈ X : x is isolated}, and let φ be a weak-* point of continuity,
with ‖φ‖ = 1. Then

∥

∥φX\I

∥

∥ = 0 and hence φ =
∑

x∈I φx (and ‖φ‖ =
∑

x∈I ‖φx‖).

Proof. If I ⊂ X is the set of isolated points of X, then I is open, and so X \ I is
closed. Given ε > 0, we can find I0 = {x1, ..., xm} ⊂ I such that

∑

x6∈I0
‖φx‖ < ε.

Recall that φx = 0 if x is non-isolated. By the remark above there is a convex
combination

∑n
k=1 δyk

◦Hk (where we suppress the scalar coefficients) such that
‖φ−

∑n
k=1 δyk

◦Hk‖ < ε. Hence,
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Extremal properties of section spaces 63

∥

∥φX\I

∥

∥ ≤
∥

∥

∥
φX\I − (

∑n
k=1 δyk

◦Hk)
X\I

∥

∥

∥
+ || (

∑n
k=1 δyk

◦Hk)
X\I

−

− (
∑n

k=1 δyk
◦Hk)

X\I0

‖+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥

=
∥

∥

∥
φX\I − (

∑n
k=1 δyk

◦Hk)
X\I

∥

∥

∥
+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)I\I0

∥

∥

∥

+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥

< ‖φ− (
∑n

k=1 δyk
◦Hk)‖+

∥

∥

∥

∑

x∈I\I0
φx − (

∑n
k=1 δyk

◦Hk)x

∥

∥

∥

+
∥

∥

∥

∑

x∈I\I0
φ

x

∥

∥

∥
+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥

< ε+
∑

x∈I\I0

∥

∥φx − (
∑n

k=1 δyk
◦Hk)x

∥

∥+
∥

∥

∥

∑

x∈I\I0
φ

x

∥

∥

∥

+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥

< ε+ ‖φ− (
∑n

k=1 δyk
◦Hk)‖+ ε+

∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥

< ε+ ε+ ε+
∥

∥

∥
(
∑n

k=1 δyk
◦Hk)

X\I0

∥

∥

∥
.

Finally, note that

∑

x∈X\I0

∥

∥

∥

∥

∥

φx −

(

n
∑

k=1

δyk
◦Hk

)

x

∥

∥

∥

∥

∥

<

∥

∥

∥

∥

∥

φ−

n
∑

k=1

δyk
◦Hk

∥

∥

∥

∥

∥

< ε,

and
∑

x∈X\I0

‖φx‖ < ε

together imply that

∑

x∈X\I0

∥

∥

∥

∥

∥

(

n
∑

k=1

δyk
◦Hk

)

x

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

x∈X\I0

(

n
∑

k=1

δyk
◦Hk

)

x

∥

∥

∥

∥

∥

∥

< 2ε.

Now, it is easy to check that for any closed set C ⊂ X and any δy ◦ H ∈ Γ(π)∗

(y ∈ X,H ∈ H), we have

(δy ◦H)C =

{

δy ◦H, if y ∈ C
0, if y 6∈ C

.

Thus,

∥

∥

∥
(
∑n

k=1 δyk
◦Hk)X\I0

∥

∥

∥
=

∥

∥

∥

∑

yk∈X\I0

(
∑n

k=1 δyk
◦Hk)yk

∥

∥

∥

≤
∥

∥

∥

∑

x∈X\I0

(
∑n

k=1 δyk
◦Hk)x

∥

∥

∥
.
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Hence we have
∥

∥φX\I

∥

∥ < 5ε, and since ε was arbitrary, we have φX\I = 0.
Thus,

φ = φI =
∑

x∈I

φx =
∑

{x∈I:φx 6=0}

φx.

2

This completes the proof of Proposition 2.

The next corollary follows immediately by combining Propositions 1 and 2.

Corollary 6. If X has no isolated points, then the unit ball of Γ(π)∗ has no
weak-∗ points of continuity.

In order to obtain a complete characterization of the weak-∗ points of sequential
continuity of BΓ(π)∗ we restrict ourselves to the strongly norming bundles over a
first countable base space X. This generalizes [6, Theorem 9].

Proposition 7. Let π : E → X be a bundle of real Banach spaces with X first
countable and H strongly norming. Let I ⊂ X be the set of isolated points of X.
Then φ ∈ BΓ(π)∗ is a weak-* point of sequential continuity of BΓ(π)∗ if and only if
it has the form φ =

∑

x∈I φx where for each x ∈ X, either φx = 0 or φx/ ‖φx‖ is a
weak-* point of continuity of BΓ(π)∗ , and ‖φ‖ = 1 =

∑

x∈I ‖φx‖ .

Proof. If φ ∈ BΓ(π)∗ has the form φ =
∑

x∈I φx where for each x ∈ X, either φx = 0
or φx/ ‖φx‖ is a weak-* point of continuity of BΓ(π)∗ , then the proof that φ is a
weak-* point of sequential continuity of BΓ(π)∗ follows that given in Proposition 7
of [10] for weak-* points of continuity; no restriction on X is necessary.
Conversely, suppose φ ∈ BΓ(π)∗ is a weak-* point of sequential continuity of

BΓ(π)∗ . Let I ⊂ X be the set of isolated points of X. As in Lemma 4, it can be
shown that φx = 0 for each x ∈ X\I, as follows: since X is first countable, each
point x ∈ X has a countable base for its neighborhood system. In particular, if
x ∈ X\I is fixed, let {Vn} denote a countable fundamental system of neighborhoods
of x. For each Vn choose xn 6= x ∈ Vn, and as in Lemma 4, for y ∈ X and H ∈ H
define (δy ◦H)

n
by

〈σ, (δy ◦H)
n〉 =

∫

X\Vn
〈σ(y′), H(y′)〉 dδy +

∫

Vn
〈σ(xV ), H(xV )〉 dδy

=

{

〈σ(y), H(y)〉 , if y ∈ X \ Vn
〈σ(xV ), H(xV )〉 , if y ∈ Vn.

As in the proof of Lemma 4, one can show that (δy ◦H)
n
∈ BΓ(π)∗ and that

(δy ◦H)
n
converges weak-∗ to δy ◦ H as Vn → {x} . Arguments similar to those

in the remark preceding Lemma 5 now show that there is a sequence of convex
combinations from S which converges to φ weak-∗, and hence in norm, since φ is
a weak-* point of sequential continuity. To complete the proof of Proposition 7,
follow along the same lines as the proof of Lemma 5 to show that φ has the desired
form φ =

∑

x∈I φx. 2
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Corollary 8. Let π : E → X be a bundle of real Banach spaces with X first
countable and H strongly norming. If X has no isolated points, then the unit ball
of Γ(π)∗ has no weak-∗ points of sequential continuity.
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